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Introduction: The Caspian Sea is the world’s largest landlocked saline lake

which lies between Europe and Asia. This region is particularly known for its

large-scale oil reserves, pipelines, and drilling activities, which have

contributed to the environmental decline of this lake. In addition to

pollution from the petroleum industry, drainage from various river basins

brings an influx of residential, industrial, and agricultural effluents that induce

eutrophication and hypoxic conditions in deeper, colder waters, creating an

oxygen gradient. The temperature and oxygen stratification in this

environment has presented a unique opportunity to investigate the

potential of the biodegradative processes carried out by the indigenous

microbial community. We believe these indigenous microbes possess

different metabolic capabilities to degrade oil as they adapted to declining

oxygen concentrations and temperatures with increasing depths over a

prolonged period. Hence, community structure and composition will vary

with depth.

Methods: Microcosms were set up to observe the indigenous microbial

reaction after a 60 ppm native crude oil amendment over 115 days. Surface

water microcosms were incubated at 28ºC and aerated while deep water

microcosms were incubated at 8ºC under anaerobic conditions. These two

environmental conditions represent the temperature and oxygen extremes

along the gradient and were selected as we try to simulate the indigenous

community’s response to this oil contamination. DNA was extracted and

amplified from these microcosms and sequenced. Bioinformatic analysis was

performed to track changes in the abundance of taxa present and biodiversity

over different time points to show the progression of community structure.
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Results: All microcosms showed the presence of hydrocarbon-degrading

phyla, whose presence is consistent with other reports from oil-enriched

environments. However, distinct communities were observed in oxic versus

hypoxic microcosms.

Conclusion: Orders of Bacteria related to sulfate and nitrogen cycling were

found in hypoxic microcosms, indicating a possible mechanism for the

anaerobic biodegradation of crude oil. GC-MS analysis of initial and final

microcosms also provided evidence of degradation of hydrocarbon fractions

in both warm, oxic and cold, hypoxic conditions.
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1 Introduction

The Caspian Sea is the world’s largest brackish lake with a

salinity of approximately one-third of normal seawater (Leroy et al.,

2007; Owen et al., 2023). This lake lies between Europe and Asia

and borders five (5) countries along its coast – Russia, Azerbaijan,

Iran, Kazakhstan, and Turkmenistan (Figure 1). The Caspian Sea is

an endorheic lake with no outlets or direct connection to an ocean;

however, more than 130 rivers flow into the Caspian Sea (Owen

et al., 2023). The Caspian Sea is divided into three main geological

basins – the northern, middle, and southern basins. Water depths

increase towards the southern end of this basin, reaching a

maximum depth of 1025 meters (Dumont et al., 2004; EIA, 2013;

Owen et al., 2023).

The Caspian basin is one of the oldest oil-producing regions in

the world (Effimoff, 2000; Katz et al., 2000). This region is well

known for its considerable oil reserves with an estimated 48 billion

barrels of oil and 292 trillion cubic feet of natural gas in proven and

probable reserves (EIA, 2013; Holstein et al., 2018). The Caspian

basin also contributes to the global energy supply with an average

production of 2.6 million barrels/day according to the US Energy

Information Administration EIA (2013). Azeri light crude oil is

extracted offshore near Azerbaijan’s shoreline of the Caspian Sea

(Figure 1). It is a well-balanced, sweet (low sulfur content) crude

that is valued since a greater percentage of it can be easily refined

into desirable petroleum products, for example naphtha (for

solvents), gasoline and other fuel oils. The large scale of this

industry has contributed to the waterbody’s environmental

decline. This region faces challenges with the transportation of

the oil extracted and produced since its hydrocarbon reserves are

relatively far from export markets. These long distances require

shipping and pipeline infrastructure to transport oil which a

significant source of oil pollution (Holstein et al., 2018). Crude oil

is both a natural and anthropogenic contaminant within the

Caspian Sea. Oil also enters the Caspian through natural seepages
02
from the seabed and mud volcanoes (Mityagina et al., 2019).

Approximately one million tons of this oil leaked into the

Caspian annually from these various sources (Mityagina et al.,

2019; Modabberi et al., 2020). The Caspian Sea is surrounded by

urban, industrial, and agricultural areas. In addition to oil pollution

from the petroleum industry, drainage from various river basins

brings an influx of untreated sewage, industrial and agricultural

effluents that induce eutrophication which causes anoxic (low

oxygen) conditions in deeper, colder waters (Miller et al., 2020;

Modabberi et al., 2020). Oxygen saturation has dropped to around

~3% in deeper waters (Supplementary Table 1). Such anoxic

conditions affect the mortality of benthic marine organisms and

alter biogeochemical cycling (Aladin and Plotnikov, 2004). Since

the Caspian Sea is an enclosed waterbody, it acts as a reservoir for

pollutants where they begin to accumulate, making it particularly

vulnerable to human influence. The lack of outlets, weak tidal

forces, and increasing evaporation rates encourage the

accumulation of pollutants in the waters and benthic sediments of

the Caspian Sea (Nasrollahzadeh, 2010; Medvedev et al., 2017;

Mishra et al., 2017).

Crude oil is a complex mixture of thousands of organic

compounds containing mainly hydrogen and carbon, which is

highlighted in Figure 2 (Hassanshahian and Cappello, 2013;

Mahjoubi et al., 2018; Wang et al., 2021). Depending on their

chemical structure, these hydrocarbons can be classified into

alkanes, alkenes, cycloalkanes, and aromatics (Stauffer et al.,

2008). Crude oil also contains derivatives of nitrogen-, sulfur- and

oxygen-containing compounds (Morgan and Watkinson, 1994;

Stauffer et al., 2008). Metals and other inorganic compounds may

also be present at very low concentrations. The complex chemistry

of crude oil needs a complex community of microorganisms to

degrade it since each component has a distinct chemical property

that influences its biodegradability. No single organism is able to

metabolize all hydrocarbon fractions in crude oil. Microbial

degradation of the crude oil fractions follows an ease of
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degradation from bioavailable to recalcitrant compounds, typically

in the order of n-alkanes > branched alkanes > aromatics > cyclic

alkanes > polycyclic aromatic hydrocarbons > resins and

asphaltenes (Das and Chandran, 2011; Varjani, 2017; Varjani and

Upasani, 2017). This results in a succession of microbial bloom and

death as compounds are consumed (Hazen et al., 2010; Olajire and

Essien, 2014; Mahjoubi et al., 2018). Hence, these microbes are

working in conjunction with each other with their varying

enzymatic capabilities to provide a dynamic community response

to this contaminant.

Figure 3 illustrates the changing biochemical demands of oil

biodegradation with decreasing oxygen concentrations. Alternate

electron acceptors (NO3
−, Fe3+, SO4

2−, CO2) are needed to complete

this process in the absence of oxygen (Hazen et al., 2016). Other
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environmental variables, such as temperature, can also influence oil

biodegradation. Temperature normally affects the metabolic rate of

these hydrocarbon-degrading organisms with metabolism

decreasing with decreasing temperatures (Das and Chandran,

2011). However, over long periods of time, changes in enzymatic

ability to degrade at low temperatures will increase and the

organisms will become psychrophiles and will degrade oil faster

at colder temperatures (Hazen et al., 2010; Hazen, 2018; Brown

et al., 2020). The physicochemical characteristics of the oil are also

affected by temperature where oil viscosity increases with

decreasing temperature (Ribicic et al., 2018b). Hence, the

biodegradation will proceed differently in surface waters (warmer,

well-oxygenated) versus deep waters (cold, anoxic conditions) of

the Caspian Sea.
FIGURE 1

Showing environmental hazards in the Caspian Sea. Industrial activities, especially oil extraction, are the main sources of water and land pollution in
the region. Off-shore oil extraction, pipeline transport and oil refineries have generated large quantities of toxic waste and oil contamination that
remains trapped within the Caspian Sea because of its endorheic nature. Philippe Rekacewicz (le Monde Diplomatique) assisted by Laura Margueritte
and Cecile Marin (2012).
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1.1 Aerobic vs. anaerobic biodegradation of
crude oil

Bacteria can biodegrade the hydrocarbon fractions found in

crude oil in both aerobic and anaerobic conditions (Figure 4). This

process will usually proceed more quickly in aerobic conditions. As

previously mentioned, the biochemical demands of hydrocarbon

degradation will vary with oxygen concentration. In aerobic

conditions, oxygen is needed, both as a terminal electron acceptor

and an activator, to begin hydrocarbon degradation. Metabolism of

aliphatic hydrocarbons is usually initiated by the action of different

oxidase and peroxidase enzymes to form a primary alcohol (Stroud

et al., 2007; Sierra-Garcia et al., 2017). Further oxidation occurs,

converting the hydrocarbons into fatty acids and other intermediate

products that can be further utilized in the tricarboxylic acid (TCA)

cycle (Hassanshahian et al., 2012). Aromatic hydrocarbons undergo

a similar process where oxygen is introduced into the ring structure

via the action of oxygenase enzymes. The ring is then cleaved, and

there is further transformation of the intermediate products which

are eventually passed into the TCA cycle (Hassanshahian et al.,

2012; Varjani, 2017; Perez-Pantoja et al., 2019).

Anaerobic respiration proceeds differently with a reductive

reaction. It is often a much slower process as it is more difficult to

overcome the initial energy barrier of breaking the C-H bond (Boll

and Heider, 2010; Ghosal et al., 2016; Mahjoubi et al., 2018).

Organisms will generate energy by either coupling hydrocarbon

oxidation to respiration via the reduction of an alternate terminal

electron acceptor (e.g., nitrate, sulfate, iron) or using a fermentation

pathway (Wartell et al., 2021). When the concentration of terminal
Frontiers in Microbiomes 04
electron acceptors has been exhausted, some microbes will use

methanogenesis (using CO2 as terminal electron acceptor) to

degrade various hydrocarbons. The complex hydrocarbons found

in crude oil will be oxidized tomethanogenic substrates, which can be

further converted into methane (Laczi et al., 2020; Sengupta and Pal,

2021; Wartell et al., 2021). Different mechanisms have been proposed

for how the initial attack of hydrocarbons proceeds in these

conditions, but there is still a fair amount of uncertainty. Figure 4

highlights some of these proposed mechanisms for initialization

include the addition of hydrocarbon fractions to fumarate,

methylation of unincorporated fractions, or hydroxylation with

water (Sierra-Garcia et al., 2017; Wartell et al., 2021).
1.2 Tackling pollution with bioremediation

As a major oil production site, the Caspian region has been

exposed to large pollution loads originating from oil and gas

industries and natural seepages for a prolonged period

(Nasrollahzadeh, 2010; Holstein et al., 2018; Mityagina et al.,

2019). As a result, the microbial community within this region

has had time to adapt to the presence of this pollutant through

repeated exposure over thousands of years via natural selection.

With this “memory response,” this indigenous community should

be able to metabolize this contaminant and transform into less

complex hydrocarbons, carbon dioxide, or microbial biomass

via biodegradation.

Bioremediation presents a less invasive, environmentally

friendly, and cost-effective option to tackle this oil pollution
FIGURE 2

Crude oil is composed of different hydrocarbon fractions, a mix of metals and other compounds. As a result, crude oil has a complex chemistry.
Adapted from Mahjoubi et al. (2018).
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(Mahjoubi et al., 2018). As a result, it has been proposed as a

strategy to combat rising oil pollution in the Caspian Sea over

chemical or mechanical removal techniques (burning, skimming,

dispersants), especially at increased depths. During oil spills, an

influx of hydrocarbons enters the surface environment of the

waterbody and into the oxygenated water column, where aerobic

degradation can occur with oxygen as the final electron acceptor.

However, oil escaping from natural seeps or leaking from

underwater pipelines enters the environment at deeper depths

into the low oxygen zone, where anaerobic degradation takes

over, and alternate terminal electron acceptors are needed

(Figure 3). This study aims to identify the unique community

structure of the oxic versus the hypoxic environments and

compare the biodegradative capabilities of each community in

response to crude oil amendment. Understanding how the

indigenous community responds in surface waters (warm, oxic

conditions) versus deeper waters (cold, hypoxic, to anoxic

conditions) will enable us to address difficulties associated with

the biodegradation of crude oil.
2 Methods

2.1 Sample collection

Microcosm experiments were conducted using seawater

collected from the Caspian Sea approximately 120 km east of

Baku, Azerbaijan by British Petroleum (BP) Azerbaijan

(Figure 1). Observation station 22 was designated as the sample

collection site. The sediments at this site have consistently shown a
Frontiers in Microbiomes 05
high hydrocarbon content. This contamination is a result of a

natural source, a mud volcano, and is unrelated to extraction

activities (BP-Azerbaijan, 2019). Water was collected from ~25 m

(near surface) and below the thermocline at ~350 m (near bottom)

to represent oxic and hypoxic conditions, respectively. Seawater was

collected in Niskin bottles affixed to a rosette carriage and brought

onboard the ship for preservation. Samples were transferred to 1L

amber bottles while minimizing exposure to the ambient

environment and preserved at 4°C. Methods for sample collection

were adapted from Miller et al. (2019).
2.2 Microcosm experiments for 16S
rRNA analysis

Experiment microcosms were set up in triplicate and with 110

mL of seawater and inoculated with 60 ppm of Azeri crude oil

provided by BP. Oxic microcosms were assembled under a Biosafety

cabinet and shaken at 24°C, while hypoxic microcosms were

assembled and sealed in an anaerobic chamber and then shaken

at 8°C in the dark. This was done to represent the ambient

environmental conditions of the collection sites (Supplementary

Table 1). A control microcosm (in triplicates) comprised of

seawater with no added crude oil was used to establish baseline

conditions, representing no oil pollution. These microcosms were

destructively sampled at 0 days, 5 days, 10 days, 15 days, and 115

days. Microcosm seawater was filtered through a 142 mm nylon

filter with a pore size of 0.2 mm filter, and DNA was extracted from

the filter using the Qiagen DNeasy PowerSoil extraction kit

according to the manufacturer’s instructions (Valencia, CA). We
BA

FIGURE 3

(A, B) Showing the fate of oil spills in a marine ecosystem. Aerobic biodegradation will proceed in surface waters but as oxygen concentration
decreases with depth, so does the rate of aerobic biodegradation. Anaerobic biodegradation will proceed based on the redox potential of available
compounds at deeper depths. Source: (Daghio et al., 2017).
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targeted the V3-V4 hypervariable region of the 16s rRNA gene

using the 515F and 806R primers developed by Caporaso et al.

(2012) to amplify the extracted DNA using polymerase chain

reaction (PCR) with Phusion Master Mix (Thermo Fisher

Scientific, Waltham, MA). Samples were barcoded with a unique

12 base pair index to multiplex samples for sequencing. Library

preparation for sequencing was done according to the standard

Illumina-MiSeq protocol with a 300 cycle v2 reagent kit (San Diego,

CA). Microcosms were set up in triplicates for statistical analysis

and determination of significant differences between communities.

FASTQ files for each replicate was uploaded to the NCBI short read

archive under accession number PRJNA1026539.
2.3 Data analysis

Mothur v.1.46.1 (Schloss et al., 2009) was used for bioinformatic

processing where sequences. Paired-end sequences were joined,

trimmed, screened and aligned following the Mothur MiSeq

standard operating procedure (https://mothur.org/wiki/

miseq_sop/). Sequences were assigned to amplicon sequencing

variants (ASVs) with Silva 138 as the reference database for

taxonomic identification. Different statistical analyses were

calculated using different data packages with R software.

PERMANOVA analysis using the vegan package in R was

performed to analyze differences in microbial community

composition based on oxygen/temperature and oil amendment

(Oksanen et al., 2022). A Wilcoxon test was performed to

compare significant differences in genera in oxic versus hypoxic

samples. An “indicator species analysis” was also done to identify

any microbial species that were positively correlated to

experimental conditions (De Cáceres et al., 2010).
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2.4 Hydrocarbon analysis

Three experimental replicates (seawater amended with Azeri

crude) for the initial (day 0) and final (day 115) time points were

sent to the Environmental Analysis Research Lab at Florida

International University. Samples (100 mL) were processed by

liquid-liquid extraction in methylene chloride, concentrated to a

final volume of 1 mL and analyzed via gas chromatography-mass

spectrophotometry (GC-MS). Before the extraction, known

amounts of the internal standard p-terphenyl-d14 and a mixture

containing napthalene-d8, acenaphthene-d10, phenanthrene-d10,

chrysene-d12, and perylene-d12 were added. The n-alkanes from

n-C9 to n-C39 and the isoprenoids pristane and phytane were

determined by full scan acquisition. A selected ion monitoring

method (SIM) was used for the analyses of the polycyclic aromatic

hydrocarbons (PAHs), their alkylated homologs, and the C30-

hopane triterpene. The retention times were determined using

standard solutions containing all compounds of interest and

quantification was based on the internal standards addition and

calibration curves. All results are based on ratios to the recalcitrant

biomarker C30-Hopane that should not be affected by significant

degradation i.e., the normalized relative abundance.
3 Results

3.1 Community structure

Community Analysis Two hundred and ninety (290) different

phyla were identified across these oxic and hypoxic microcosms,

with 29 phyla representing most of the biodiversity found in these

samples. Oxic microcosms contained more phyla and displayed a
FIGURE 4

Pathways for the aerobic and anaerobic biodegradation of hydrocarbon compounds.
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greater biodiversity than their hypoxic counterparts, as indicated by

the Shannon Diversity Index, which is an alpha-diversity metric. A

greater biodiversity of microorganisms was observed in control

microcosms than in oil-spiked microcosms. Oxic (Figure 4) and

hypoxic (Figure 5) microcosms shared some similarities in the taxa

present on Day 0 of the experiment and in their respective initial

controls, but this distribution consistently changed as the

experiment progressed.
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The crude oil amendment caused a shift in the microbial

community and significant differences were observed between

oxic and hypoxic microcosms (p < 0.05). Additionally, the

communities represented in the initial (day 0) and final (day 115)

controls are vastly different from the communities observed in the

experiment microcosms that were spiked with crude oil under oxic

and hypoxic conditions (p ≤ 0.05). Different phyla were enriched by

the presence of this contaminant, while others showed a decrease in
B

A

FIGURE 5

(A, B) Showing relative abundance of bacterial orders in oxic microcosms, (B) Showing relative abundance of bacterial families in oxic microcosms.
frontiersin.org

https://doi.org/10.3389/frmbi.2023.1270352
https://www.frontiersin.org/journals/microbiomes
https://www.frontiersin.org


Griffiths et al. 10.3389/frmbi.2023.1270352
their relative abundance when compared to the controls. There was

also an observable pattern of sequential bloom and succession of

microorganisms at different time points in both oxic and hypoxic

conditions. Different ASVs of an unclassified Gammaproteobacteria

was highly influenced by the presence of crude oil, as its relative

abundance increased by 71% in hypoxic microcosms and 50% in

oxic microcosms within the first five days (Figures 5, 6). This taxon
Frontiers in Microbiomes 08
remained dominant in hypoxic microcosms until the final

timepoint; however, in oxic microcosms, this dominance was

diminished after day 15 when community diversity increased.

In oxic microcosms (Figure 5), the orders of Rhodobacterales

and Flavobacteriales showed a relative increase in their abundances

from the initial timepoint (day 0) up to day 15. However, their

presence was diminished by day 115. The taxa Caulobacter seemed
B

A

FIGURE 6

(A, B) Showing relative abundance of bacterial orders in hypoxic microcosms, Showing relative abundance of bacterial families in
hypoxic microcosms.
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to be enriched by the oil amendment as well. The relative

abundance of this taxa increased by approximately 7.5% from day

5 to day 15 of the experiment, and it was still present at the final

timepoint (day 115). The presence of Rhizobiales and

Burkholderiales increased slowly from day 10, with their highest

abundances being observed at day 115. Oceanospirallales and

Pseudomondales were temporarily impacted by the initial

amendment of crude oil, and their abundance relatively decreased

from day 0 to day 5. However, by day ten (10), their presence had

rebounded and remained consistent until the final time point. The

relative abundance of an unclassified Alphaproteobacteria remained

relatively low for the experiment duration until the final time point,

where it represented ~35% of the observed diversity.

Plantomycetales, Synechococcales, and Micrococcales experienced a

decline in their abundance over the experiment duration.

Figure 6 shows the relative abundance of taxa found in hypoxic

microcosms. The taxa Alteromondales was mainly found in hypoxic

microcosms, and its relative abundance increased by 30% by day 10

in our experimental microcosms compared to the initial timepoint

and the initial control. It then started to decrease in its abundance

after this time, and by day 115, its relative abundance was similar to

that of day 0. The presence of Campylobacter increased at later time

points, and a bloom was observed on day 15 of the experiment.

Desulfobulbales and Bacteroidales experienced a bloom on day 115

when compared to their negligible initial relative abundances. The

taxa Rhodospiralles and Nitrosopumilales experienced a relative

decline in their abundance from the initial time point until their

disappearance after day 10.
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3.2 Statistical analysis

To further investigate differences in community structure, a

pairwise Wilcoxon test (p < 0.05) was performed to evaluate

significant differences in taxa present in oxic and hypoxic

conditions. Microbes (Sulfurimonas, MND1, Nitrosopumilaceae)

previously implicated in nitrogen and sulfur cycling seemed to be

significantly correlated in hypoxic microcosms with the crude oil

amendment. The presence of Colwellia and Chloroflexi were also

more correlated with the low temperature, hypoxic microcosms.

The difference in community structure between oxic and hypoxic

microcosms was also shown using a NMDS plot with the Bray-

Curtis dissimilarity matrix (Figure 7). While there is some similarity

in initial time points, after day 5, there is a clear distinction between

the communities in oxic and hypoxic microcosms. This plot also

shows the similarity in communities from the initial controls and

the day 0 time points. However, later time points show less

similarity highlighting the influence of crude oil amendment on

these communities as time progressed.
3.3 Indicator species analysis

The R code indicspecies developed by De Cáceres et al. (2010)

was used to identify indicator species in the oxic (Table 1) and

hypoxic (Table 2) microcosms amended with crude oil. Colwellia

was once again highlighted as an important species in hypoxic

microcosms as well as other taxa related to hydrocarbon
FIGURE 7

NMDS plotted with vegan package in R in 2 dimensions. Stress = 0.08444561. Oxic microcosms are denoted with a black triangle while hypoxic
microcosms are represented by a black dot. Experiment microcosms are labelled with their corresponding day while control microcosms are
labelled with their corresponding day_CTRL. Red and blue circles represent the 95% confidence intervals.
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degradation under deep-sea conditions. Indicator species identified

in oxic microcosms also showed possible relation to hydrocarbon

degradation in previous studies.
3.4 Hydrocarbon analysis

After 115 days, oxic microcosms showed a change in chemical

composition and a decrease in the relative concentration of the

measurable hydrocarbons. Aliphatic hydrocarbons within the range

C8-C14 were mainly depleted by day 115 (Figure 8). A similar trend

was observed for aromatic hydrocarbons and cycloalkanes, with

their disappearance being noted after 115 days (Figure 9). The

hypoxic microcosms displayed a reduction in the relative

abundance of aliphatic hydrocarbons with over 50% reduction in
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the total measured aliphatic hydrocarbons (Figure 8). The measured

aromatic hydrocarbons and cycloalkanes showed a variation of

responses. Naphthalene, its alkylated homologs, and the

cycloalkane intermediates related to its degradation showed a

noticeable increase in relative concentration after 115 days (8).
4 Discussion

This study aims to characterize the in-situ community structure

of the Caspian Sea and to investigate the ability of the indigenous

microbial community to degrade crude oil under oxic or hypoxic

conditions. We observed changes in the community composition in

response to crude oil amendment as well as a decrease in

hydrocarbon fractions in both sets of microcosms. The

environmental conditions (brackish water, oxygen/temperature

gradient, eutrophication) in the Caspian Sea could potentially

limit the extent of crude oil biodegradation (Varjani and Upasani,

2017). Hence, studying community structure and the potential

“memory response” of these indigenous microbes will aid in

elucidating their metabolic potential and adaptation to

this pollutant.

Our seawater microcosms were kept at their ambient

environmental conditions to potentially mimic the in situ

temperature and oxygen conditions under which biodegradation

would proceed at these varying depths. Figures 5, 6 highlight the

variation in the response of the microbial community to the crude

oil amendment based on oxygen concentration and temperature.

These differing community structures are indicative of the different

metabolic strategies needed to degrade the hydrocarbons found in

crude oil. Hydrocarbon degraders are typically present at low

abundances in the environment; however, their presence will

increase with increasing concentrations of hydrocarbons (Head

et al., 2006). This trend was also observed in our experimental

microcosms. The impact of crude oil amendment increased the

relative abundance of different hydrocarbon-degrading taxa in our

experiment microcosms when compared to the control microcosms

with no oil.

Figures 5, 6 show evidence of microbial bloom and succession in

the experimental microcosms where the relative abundance of

different taxa changed during days 5 to 15 in both oxic and

hypoxic microcosms. Community dynamics shifted as the

microbial community jointly acted on the different hydrocarbons

found in crude oil (Hazen et al., 2016; Varjani and Upasani, 2017;

Xu et al., 2018). As the preferred substrates are consumed the

microbes specialized to metabolize those compounds exhaust their

carbon source and are replaced by microbes able to utilize the

remaining compounds resulting in a cycle of bloom and succession

(Dubinsky et al., 2013; Hazen et al., 2016; Ribicic et al., 2018b).

Secondary consumers are also necessary to metabolize the daughter

products from the crude oil which contributes to this microbial

network (Head et al., 2006).

All microcosms showed the presence of some hydrocarbon-

degrading phyla, which have been previously identified in other oil-

contaminated environments, most noticeably after the DeepWater

Horizon oil spill (Mason et al., 2012; Dubinsky et al., 2013; King
TABLE 1 Showing top 6 results of indicator species analysis in oxic
microcosms (p < 0.05).

Genus *statistic Suspected
Functional Role

Source

Pseudooceanicola 1 Reclassification from
Oceanicola. Species from
this taxon had previously
been isolated from
marine environments as
aerobes or
facultative anaerobes.

(Lai et al.,
2015; Peeb
et al.,
2022)

Phycisphaeraceae
unclassified

0.999 Taxa has been previously
correlated to nitrogen
removal/cycling and
degradation of petroleum
by-products/polymers.

(Liu
et al.,
2020)

Litoricola 0.999 Species within the
Oceanospirillales family
(which are typically
classed as professional
hydrocarbon degraders
and have been found in
other oil-contaminated
environments, most
notably after the
Deepwater Horizon
oil spill).

(Hazen
et al., 2010;
Doyle
et al.,
2018)

Hyphomonas 0.999 Taxon has been
previously detected in
oil-amended microcosms
and mesocosms,
suggesting possible
involvement in
hydrocarbon
degradation.

(Kappell
et al., 2014;
Ribicic
et al.,
2018a)

Bacteriovoracaceae
unclassified

0.999 Salt tolerant, predatory
taxon that possibly
regulates the structure of
bacterial communities
through predation.

(Pineiro
et al., 2007;
Welsh
et al.,
2016)

Polyangiales
unclassified

0.999 Microbial predators with
the capability to degrade
complex molecules with
hydrolytic enzymes,
proteases, cellulase, etc.

(Nierychlo
et al., 2020;
Dueholm
et al.,
2022)
*A stat value of 1 signifies that this species was found in all samples within these microcosms.
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et al., 2015; Hazen, 2018). The greatest biodiversity was observed in

microcosms without any crude oil amendment in both oxic and

hypoxic conditions. This is unsurprising as some hydrocarbons and

their intermediates are toxic to some microorganisms and the

action of hydrocarbon-degraders is not induced until carbon

enrichment occurs (Xu et al., 2018). The shift in community

structure by day 5 shows that an influx of hydrocarbons will

affect biodiversity regardless of oxygen condition. The observed

reduction in biodiversity is due to the selection pressure for

hydrocarbon-degraders after crude oil enrichment in these

microcosms. Additionally, significant differences were noted in

community structures in oxic versus hypoxic conditions. This was

further indicated by our NMDS plot (Figure 7), where there is a

clear distinction in the clustering of samples based on oxygen

condition and crude oil amendment. Figure 7 shows a difference

in communities in our experimental microcosms at various time

points. Initial sampling points are clustered closer together,

indicating the early microbial communities share some

similarities; however, after day 5, this community changes

significantly. Later time points are clustered further away from

each other, and distinct groupings between the oxic and hypoxic

samples can be observed (Figure 7).

Greater biodiversity was observed in oxic microcosms. This may

be explained by the typical aerobic degradation pathway of

hydrocarbons which involves an oxidative reaction via oxygenase

enzymes. This initial oxidation causes the hydrocarbon to become

more water soluble and introduces a new reaction point for other

species (Hassanshahian and Cappello, 2013). In oil-spiked oxic

microcosms, there was an increased presence of hydrocarbonoclastic

bacteria, which are often described as obligate hydrocarbon degraders

(Figures 5A, B). Alkane-degrading families, such as Alcanivorax and

Flavobacterium, and PAH-degrading strains, such as Micrococcales
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and Oceanicola, could indicate the biodegradation of the different

hydrocarbon fractions found in crude oil. In addition to the increased

biodiversity, aerobic biodegradation has a lower energy input for a

higher energy output when compared to anaerobic biodegradation of

hydrocarbons (Olajire and Essien, 2014). These factors could play a

role in the hydrocarbon degradation patterns measured by the GC-MS

where the relative abundance of aliphatic and aromatic hydrocarbons

were significantly reduced by day 115 (Figures 8, 9).

Anaerobic biodegradation of crude oil in the Caspian Sea is

impacted by its environmental conditions: salinity, hypoxic to

anoxic conditions and low temperatures. These harsher

conditions may hinder the remediation potential of microbes by

slowing their rate of metabolism. Colder temperatures also increase

the viscosity of crude oil, making it more difficult to be solubilized

and degraded (Das and Chandran, 2011; Ribicic et al., 2018a).

Under these conditions, the anaerobic biodegradation of

hydrocarbons may be incomplete, resulting in the accumulation

of daughter products or intermediates (Parisi et al., 2009;

Meckenstock et al., 2015). The complexity of anaerobic

biodegradation is especially highlighted with PAHs. Their low

solubility and stable ring structures make these compounds less

bioavailable (Boll and Estelmann, 2018). Unlike aerobic

biodegradation, which relies on the presence of oxygen as a

terminal electron acceptor, anaerobic biodegradation uses

alternative electron acceptors such as nitrate or sulfate (Figure 3).

Taxa related to sulfate reduction (Desulfocapsaceae, Desulfovibri)

and nitrogen cycling (Nitrosococcales) were found in hypoxic

microcosms spiked with crude oil (Figure 6B). These bacteria are

possibly coupling these metabolic processes while using carbon as

an energy source, indicating that anaerobic biodegradation may be

occurring. Sulfate-reducing bacteria can degrade a wide range of

substrates including alkanes, benzene, and PAHs (Mahmoudi et al.,
TABLE 2 Showing top 6 results of indicator species analysis in hypoxic microcosms (p <0.05).

Genus *statistic Suspected Functional Role Source

WCHB1-41_ge 1* Suspected to contribute to arginine and fatty acid synthesis to provide energy for growth. Other bacteria
within the order Kiritimatiellae have been associated with sulfated polysaccharides metabolism under
anaerobic conditions.

(Spring et al., 2016;
van Vliet et al.,
2019; Guo
et al., 2021).

Sulfurimonas 0.999 Mixotroph associated with deep-sea hydrothermal vents. Wang et al. (2020) isolated strains capable of
utilizing n-alkanes and naphthalene and phenanthrene as a sole carbon source high pressure and
low temperature.

(Wang et al., 2020)

Spongiibacteraceae
unclassified

0.999 This taxon has been linked to aromatic and n-alkane hydrocarbon degradation in seawater at low
temperatures and high pressures. Members have this taxon have also been implicated in biofilm formation
on biopolymers in seawater.

(Ribicic et al.,
2018b; Wang et al.,
2020; Jacquin
et al., 2021)

Nitrosopumilaceae
unclassified

0.999 ammonia-oxidizing archaea implicated in nitrogen cycling and carbon fixation that has shown adaptations
to low oxygen environments.

(Pester et al., 2011;
Zhong et al., 2020)

Patescibacteria
unclassified

0.998 Ultra-small bacteria with possible adaptations to low oxygen, low nutrient conditions in water
environments. Related taxa found in sediments from the Marianas Trench with possible capability to
metabolize organic compounds via fermentative processes and genes associated with respiratory
nitrate reduction.

(Zhong et al., 2020;
León-Zayas et
al., 2017)

Colwellia 0.998 This taxon is cold adapted and capable of degrading short chain alkanes and possibly aromatic
hydrocarbons. It was identified as a late bloomer found deep within the plume of the Deepwater Horizon
oil spill.

(Redmond and
Valentine, 2012;
Mason et al., 2014)
*A stat value of 1 signifies that this species was found in all samples within these microcosms.
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2015). Our findings are consistent with other studies at the lower

depths of the Caspian who also reported the dominance of

Gammaproteobacteria in addition to the presence of sulfate-

reducing taxa and ammonia-oxidizers (Mahmoudi et al., 2015;

Hazen and Techtmann, 2018). Psychrophilic and oil-degrading

taxa, such as Colwellia and Cycloclasticus, were primarily found in

hypoxic microcosms which were kept at low temperatures

(Figure 6B). The presence of hydrocarbon-degrading taxa after oil

amendment should signal that degradation is occurring. Figure 8
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shows evidence of the decrease in relative abundance of aliphatic

hydrocarbons. The dampening of peaks within the GC-MS spectra

and an increase in the unresolved complex mixture (UCM) in

Supplementary Figure 2 might also indicate biodegradation of

the oil.

Although we identified the presence of PAH-degrading taxa,

reduced biodiversity coupled with the complexities of anaerobic

biodegradation of PAHs may contribute to the inconclusive trend

noticed in Figure 9. The increase in the relative concentration of
FIGURE 8

Showing relative abundance of aliphatic hydrocarbons measured by GC-MS in oxic and hypoxic microcosms. All results are semi quantitative and
based on ratios to the recalcitrant biomarker C30-Hopane. Data is aggregated by groupings based on number of carbon atoms.
FIGURE 9

Showing relative abundance of aromatic hydrocarbons measured by GC-MS in oxic and hypoxic microcosms. All results are semi quantitative and
based on ratios to the recalcitrant biomarker C30-Hopane. Data is aggregated by groupings based on number of rings.
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naphthalene, its alkylated homologs, and cycloalkane intermediates

suggests the possible occurrence of biotransformation of crude oil

rather than complete degradation within these microcosms

(Meckenstock et al., 2004). Incomplete biodegradation of

aromatic hydrocarbons could occur under these hypoxic

conditions leading to the production of daughter products or

dead-end metabolites which can inhibit biodegradation (Nzila,

2018). These products typically have similar structures to their

parent compound causing difficulties during separation and

identification using the GC-MS (Annweiler et al., 2002; Marshall

and Rodgers, 2008; Nzila, 2018). These results are contrary to a

previous study carried out by previous members of this group.

Miller et al. (2019) found that rates of anaerobic biodegradation

exceeded those of aerobic biodegradation in Caspian seawater

microcosms amended with oil and a dispersant over a time

period of seventeen (17) days. Dispersants can enhance the

biodegradation of crude oil by reducing the surface tension to

cause the formation of smaller oil droplets. These smaller droplets

provide a larger surface area for microbial interaction (National

Academies of Sciences and Medicine, 2020). The “bottle effect” due

to long travel and holding times during the global pandemic may

have also played a role in these differing results. However, this

warrants further study into the mechanisms behind anaerobic

degradation within this environment.

Indicator species can be used as ecological indicators of habitat

types or environmental conditions due to their niche preferences.

They are usually determined by analyzing the relationship between

the observed species (based on abundance data) in a set of sampled

sites and a user-defined classification of those sites. (De Cáceres

et al., 2010). We wanted to further elucidate the microbial response

to our oxygen conditions in the presence of crude oil. The

identification of halotolerant species in both oxic and hypoxic

indicates the adaptation of the indigenous microbes to the

brackish conditions within the Caspian. Oxic microcosms

(Table 1) show the presence of aerobic bacteria previously

correlated to hydrocarbon degradation. Hypoxic microcosms

(Table 2) were more correlated with the presence of mixotrophs

and psychrophilic taxa which could indicate possible

microaerophilic conditions in these microcosms. Taxa involved in

sulfate cycling were also more correlated with hypoxic microcosms,

potentially highlighting a metabolic strategy for hydrocarbon

degradation via an alternate terminal electron (Figure 3). Notably,

our indicator species analysis also identified an ASV associated with

the unclassified Gammaproteobacteria (stat = 0.885) that

dominated hypoxic microcosms.
5 Conclusion

Microcosms showed greater similarity to each other based on

oxygen concentration as opposed to hydrocarbon amendment. The

variation in metabolic strategies needed to degrade oil in oxic and

hypoxic conditions could account for these differences. The

microbes within assembled microcosms showed some adaptation

to their simulated environmental conditions and displayed
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degradation of hydrocarbon fractions found within crude oil.

Distinct communities were present in surface waters and deeper

waters of the Caspian Sea. These communities have been influenced

by the continuous presence of oil in the water body and contain a

mix of different microorganisms that have been shown to degrade

hydrocarbons themselves or have been found in other

hydrocarbon-enriched environments. The structure of these

communities changed over time after the crude oil amendment,

which was indicative of a pattern of bloom and succession typically

noticed in places that have experienced an oil spill. Metagenomic

analysis of these microcosms is pending to further elucidate the

possible functional role of the identified species to crude oil

amendment in differing oxygen conditions.
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