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Abstract: 29 

Annotating ecological functions of environmental metagenomes is challenging due to a lack of 30 

specialized reference databases and computational barriers. Here we present the Ecological 31 

Function oriented Metagenomic Analysis Pipeline (EcoFun-MAP) for efficient analysis of 32 

shotgun metagenomes in the context of ecological functions. We manually curated a reference 33 

database of EcoFun-MAP which is used for GeoChip design. This database included ~1,500 34 

functional gene families that were catalogued by important ecological functions, such as carbon, 35 

nitrogen, phosphorus, and sulfur cycling, metal homeostasis, stress responses, organic 36 

contaminant degradation, antibiotic resistance, microbial defense, electron transfer, virulence and 37 

plant growth promotion. EcoFun-MAP has five optional workflows from ultra-fast to ultra-38 

conservative, fitting different research needs from functional gene exploration to stringent 39 

comparison. The pipeline is deployed on High Performance Computing (HPC) infrastructure 40 

with a highly accessible web-based interface. We showed that EcoFun-MAP is accurate and can 41 

process multi-million short reads in a minute. We applied EcoFun-MAP to analyze metagenomes 42 

from groundwater samples and revealed interesting insights of microbial functional traits in 43 

response to contaminations. EcoFun-MAP is available as a public web server at 44 

http://iegst1.rccc.ou.edu:8080/ecofunmap/.  45 

 46 

Keywords: Metagenomic sequencing; Functional gene; Ecological functions; Pipeline; High 47 

Performance Computing.  48 
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Introduction 49 

High throughput sequencing (HTS) and associated genomic technologies have revolutionized 50 

microbial ecology studies1–5 in the past decade. It allows in-depth profiling of microbial 51 

communities from environmental samples and leads to novel insights into microbial species, 52 

metabolic functions and pathways6–8. Shotgun metagenomic sequencing is one major application 53 

of HTS technology for microbial ecology studies9. It randomly recovers short or long reads from 54 

metagenomes, avoids selective amplification and thus several related biases and limitations in 55 

amplicon sequencing10–12, and has the potential to accurately quantify the abundances of both 56 

microbial taxa and functional genes13. 57 

Shotgun metagenomic sequencing often generates a large volume of data and requires 58 

intensive complicated computational analysis to survey a typical environmental metagenome, 59 

e.g. soil metagenome. To meet the data analysis needs, many computational resources have been 60 

made available. Those resources have three main categories, including standalone programs for 61 

individual steps (e.g. quality control14–16, assembly17,18, gene prediction19,20, and sequence 62 

alignment21–23, reference databases24–28 and integrated analysis pipelines29–32).  63 

Regardless of the available resources, we still face challenges for annotating functional genes 64 

of metagenomes that are ecologically important. First, most reference databases, e.g., NCBI nr, 65 

are for general purpose and lack focus on ecological functions. Using those databases without 66 

further filtration/distillation could result in unnecessary computing and data interpretation 67 

difficulties. Second, lack of computing skills and advanced hardware resources is still prevalent 68 

among microbial ecologists, which hinders the use of standalone programs and databases, 69 

especially those with complex interfaces and insufficient documentation. Integrated analysis 70 

pipelines, particularly web-based applications, which provide universal access and require little 71 
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computing skills, are uniquely positioned to address this challenge. Nevertheless, few pipelines 72 

of such are available, efficient or ecology-oriented.  73 

Here we developed an Ecological Function oriented Metagenomics Analysis Pipeline 74 

(EcoFun-MAP), which uses a gene-centric paradigm to ease functional analysis of metagenomes. 75 

We manually curated the reference database of EcoFun-MAP by selecting and categorizing a 76 

comprehensive collection of microbial genes that were important to ecological functions and 77 

geochemical processes, which are used to design comprehensive GeoChip – a high throughput 78 

array-based technology for dissecting microbial community functions important to 79 

biogeochemistry, ecology, environmental sciences, agriculture, as well as human health33–36. The 80 

database included both relevant nucleotide and amino acid sequences, and hidden Markov 81 

models that are necessary for computing facilitation. EcoFun-MAP is also designed with several 82 

distinct data analysis workflows and evaluated for both speed and accuracy. To promote 83 

efficiency and accessibility, EcoFun-MAP was deployed on High-Performance Computing 84 

(HPC) infrastructure with a web-based user interface. In addition, we applied EcoFun-MAP to 85 

analyze metagenomes from groundwater samples and demonstrated its high effectiveness in 86 

revealing compositional variations of relevant functional genes along the contamination gradient.  87 

 88 

Results 89 

Overview of EcoFun-MAP  90 

EcoFun-MAP is a fully automated pipeline that performs efficient functional gene annotation of 91 

sequencing reads from shotgun metagenomes. It consists of a reference database of functional 92 

genes and several computing workflows for gene annotation. 93 
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The reference database of EcoFun-MAP has four main modules, including a DIAMOND23 94 

index of seed sequences (EFM-DI-DB-S), gene family Hidden Markov Models (EFM-HMM-95 

DB), a DIAMOND (EFM-DI-DB-R) and NCBI-BLAST37 (EFM-BLAST-DB) index of full 96 

sequences (Fig. 1). To build these modules, we first manually selected the protein seed 97 

sequences for all functional gene families, which are pooled to make the EFM-DI-DB-S. We 98 

aligned seed sequences of each functional gene family and used the resulting multiple sequence 99 

alignment to build the EFM-HMM-DB. Both EFM-DI-DB-R and EFM-BLAST-DB modules use 100 

full reference sequences rather than the seed sequences only. We downloaded a large number of 101 

candidate sequences with keyword-based queries from NCBI GenBank25. Although our queries 102 

were crafted carefully, there might still be some false sequences in the candidate sequences due 103 

to possible mis-annotations. To exclude these false sequences, we used an iterative HMM 104 

searching procedure, which has the following steps: (i) set up an initial e-value cutoff = 10, (ii) 105 

searching the candidate sequences against the EFM-HMM-DB using the e-value cutoff, (iii) 106 

manually evaluate the resulting candidate sequences passed the cutoff, and (iv) if needed, adjust 107 

e-value cutoff and repeating the procedure. Since candidate sequence and HMM model quality 108 

varies, the best cutoff for each gene family differs from each other, and a rigorous manual 109 

validation is critical to ensure the quality of reference sequences. In addition, we clustered the 110 

reference sequences of each gene family into Functional Clusters (fClusters) based on the 111 

sequence similarity (95%), which allows further stratification of annotated reads by the same or 112 

highly related species.  113 

The reference database of EcoFun-MAP covered a total of 17 major functional gene 114 

categories and 160 primary subcategories (Table 1), which provides a comprehensive collection 115 

of functional genes that are important to biogeochemistry, ecology, environmental science, 116 
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agriculture, and public health. For all 1,491 functional gene families included, we selected 117 

14,500 seed sequences and built 1,862 HMM models. Meanwhile, a total of 1,217,363 reference 118 

functional gene sequences were retrieved and manually validated using the iterative HMM 119 

searching, which originated from about 50,000 taxonomical units that were distinguishable based 120 

on their taxonomical IDs. Based on these sequences, 280,247 fClusters were generated and 121 

further incorporated in EcoFun-MAP. Details about the coverage of EcoFun-MAP can be found 122 

in Table S1.  123 

To fully take advantage of the reference database of EcoFun-MAP, we implemented a total 124 

of five workflows, which were labeled as ultra-fast, fast, moderate, conservative, and ultra-125 

conservative (Fig. 2), respectively. All of the workflows used the same preprocessing procedure 126 

for quality trimming and gene prediction, in which the bases of low quality or ambiguity and 127 

excessively short reads were removed and gene fragments from qualified reads were identified. 128 

These workflows then diverge in the downstream analysis. In the ultra-fast workflow, 129 

preprocessed reads were directly searched against the EFM-DI-DB-S database. The fast 130 

workflow extended the ultra-fast workflow by further searching the EFM-DI-DB-S annotated 131 

reads against the EFM-HMM-DB and the EFM-BLAST-DB sequentially. Similarly, in the 132 

moderate workflow, the preprocessed reads were directly searched against the EFM-DI-DB-R. 133 

The conservative workflow extended the moderate by further searching the EFM-DI-DB-R 134 

annotated reads against the EFM-HMM-DB and then searching the resulting reads against the 135 

EFM-BLAST-DB. Finally, in the ultra-conservative workflow, the preprocessed reads were first 136 

searched against the EFM-HMM-DB, and then the resulting reads were searched against the 137 

EFM-BLAST-DB. In the end, all workflows provided an optional step to normalize counts of 138 

hits based on the average length of reference sequences from the gene families of the hits. Due to 139 
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all these differences, the workflows should provide disparate performance in terms of both speed 140 

and accuracy, therefore allowing needed flexibility for data analysis in practice.  141 

Computing speed evaluation of EcoFun-MAP 142 

To fully evaluate the computing speed of EcoFun-MAP in relation to input data size, we 143 

arbitrarily selected a groundwater sample (FW300), downsized it to subsamples of 0.7M, 3.5M, 144 

7M, 35M and 70M reads, which accounted for ~100M, ~500M, ~1G, ~5G and ~10G bases, and 145 

then ran all five EcoFun-MAP workflows on these subsamples. Each workflow was run with the 146 

same hardware configuration (10 nodes and 4 cores on each) and parameters. According to the 147 

design, we expected that the speed of the workflows should be ultra-fast > moderate > fast > 148 

conservative > ultra-conservative.  149 

As expected, the ultra-fast workflow had the fastest speed, which was finished running on the 150 

largest subsample (70M reads) in 1,027 seconds (s), and then was followed by moderate (1,145 151 

s), fast (1,506 s), conservative (1,865 s) and ultra-conservative (7,341 s) in order of decreasing 152 

speed (Table 2). The running of workflows on the largest subsample yielded the highest speed 153 

for all workflows (~0.6-4.1M reads/min.), and the speed of workflows increased as the data size 154 

went up. The running on the smallest subsample yielded the lowest speed for all workflows 155 

(~0.2-0.7M reads/min.). The ultra-fast workflow is >7 times faster compared to the ultra-156 

conservative workflow for the largest subsample, but only 3 times faster for the smallest 157 

subsample in our test. Together these results suggest that EcoFun-MAP is fast (average speed 158 

from ~0.4 to ~2.5 M reads/min.) and highly scalable in high-throughput sequencing data 159 

analysis, in which time cost is expected to increase less than linearly as data size hikes, because 160 

of the increases of speed. 161 
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Accuracy evaluation of EcoFun-MAP 162 

Next, we evaluated the accuracy of EcoFun-MAP in terms of sensitivity and precision. Since the 163 

ground truth of gene annotation is not accessible for the metagenomes, direct estimation of 164 

accuracy is not possible. Here we used the annotation resulting from the ultra-conservative 165 

workflow as the ground truth to compare accuracy between the other four workflows, because 166 

the ultra-conservative workflow (i) performs homolog based search for every read, which takes 167 

into account information about protein domain structure and thus is considered to be more 168 

accurate than read mapping based only on sequence identity, and (ii) utilizes probabilistic models 169 

built on multiple sequence alignments and is thus generally more capable of detecting remote 170 

homologs than similarity search. By this definition, true positives (TP) of a workflow are the 171 

reads annotated by both the workflow and the ultra-conservative workflow; sensitivity is TP / 172 

total ultra-conservative annotations; precision is TP / total reads annotated by the evaluated 173 

workflow. We further defined precision and sensitivity at four category levels, based on TP reads 174 

within the same gene, secondary subcategory, primary subcategory or category as ultra-175 

conservative annotations, respectively. 176 

We ran all EcoFun-MAP workflows on the data from the 12 groundwater samples and 177 

compared their precision and sensitivity. The results (Table S2) showed that the numbers of hits 178 

produced by different workflows were ranged from ~2.1 million (0.12%; moderate) to ~81.1 179 

million (4.46%; fast). Fast workflow produced the most hits of all (3.35-6.58%) across all 180 

samples, the moderate workflow produced the least (0.06-0.27%), and the conservative 181 

workflow had very similar yield (0.07-0.34%) as the ultra-conservative workflow (Table S2). 182 

For evaluated workflows, sensitivity rates (Table 3) were high in general (~70% above). Fast 183 

workflow had the highest sensitivity rate at all levels (85.4- 91.9%), which was then followed by 184 
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conservative and ultra-fast workflow, and moderate workflow had the lowest (69.3%-69.8%) 185 

(Table 3). Differences of sensitivity rate across four annotation category levels (i.e., primary 186 

category, secondary category, gene family and gene) were small (< 0.5%) for moderate and 187 

conservative workflows, and higher in the ultra-fast (~7.4%) and fast workflows (~6.5%). 188 

Precision rate is the highest for moderate workflow at all levels (87.0-87.5%), but quite low for 189 

both fast (2.8-3.1%) and ultra-fast workflow (8.1-8.9%); with small variation across category 190 

levels (< 0.5%) for all workflows (Table 3). We note that the low precision of fast and ultra-fast 191 

workflow is mostly due to more reads were annotated by these two workflows, and those 192 

annotations not found by ultra-conservative workflow are not necessarily false positives. 193 

Together, the results suggest that EcoFun-MAP workflows should be chosen with consideration 194 

for distinct applications, e.g., fast and ultra-fast workflow for open gene search; conservative or 195 

ultra-conservative for stringent comparative analyses.  196 

 197 

Application to groundwater metagenomic analysis 198 

To demonstrate the effectiveness of EcoFun-MAP in analyzing metagenomes, we ran all five 199 

workflows on a total of 12 groundwater samples collected from the Oak Ridge Integrated Field 200 

Research Challenge site38,39. These samples have labels including background (L0), low- (L1), 201 

intermediate- (L2), and high-contamination (L3), where L0 < L1 < L2 < L3 in terms of 202 

contamination level. SEED Subsystem annotation of these samples is also performed for 203 

comparison. Microbial community functional gene compositions were compared among the 204 

samples as shown in the DCA ordination plots (Figure. 4). The ordination results were consistent 205 

among all workflows. Samples from group L3 were observed to separate from other groups in all 206 

workflows with relatively high within-group distances. Clear separation of L2 samples from 207 
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other groups was found in the moderate, conservative, and ultra-conservative workflows (Figure 208 

4c, d and e). Clear separation of all four groups from each other was only observed in results 209 

based on the ultra-conservative workflow (Figure. 4e).  210 

The functional gene richness from different workflows showed similar trends along the 211 

contamination gradient. The richness was significantly lower (p < 0.05) in L3 samples than in L0 212 

samples, which was shown in analyses based on all EcoFun-MAP workflows and SEED 213 

Subsystem annotation. The analyses based on the fast workflow and SEED Subsystem28 214 

annotation also showed a significantly lower (p < 0.05) richness of functional genes in L3 215 

samples than in L2 samples. However, results from different workflows showed various 216 

estimations of richness changes. The ultra-fast and fast workflows estimated that richness of 217 

functional genes was ~12% lower in L3 samples than in L1 samples, the moderate, conservative, 218 

and ultra-conservative workflows estimated that the richness of functional genes were ~24% to 219 

~25% lower, and the SEED Subsystem annotation estimated that it was only ~2.8% lower. 220 

Meanwhile, the fast workflow estimated that the richness of functional genes was ~8.4% lower 221 

in L3 samples than in L2 samples, and SEED Subsystem annotation estimated ~2.3% of lower 222 

richness. The results above suggest all workflows of EcoFun-MAP are capable of characterizing 223 

community-wide variations in groundwater metagenomes under the contamination gradient, with 224 

higher sensitivity compared to the SEED Subsystem annotations. This is probably because the 225 

SEED annotations include many universal physiological functions and genes which are less 226 

variable.  227 

Next, we further analyzed relative abundances of major functional categories, including the 228 

category of C, N, S and P cycling, Metal homeostasis, Stress, Organic contaminant degradation, 229 

Antibiotic resistance, and Electron transfer,  which are considered to be highly relevant to the 230 
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study site, and compared them between different samples. The analysis was based on the ultra-231 

conservative workflow. Relative abundances of functional genes from the C cycling category 232 

were lower in two of L3 samples (FW106 and FW021), which are two samples with the highest 233 

level of contamination in many heavy metals (e.g., Cr, Eu and Ce) (Figure S3), and those from 234 

the metal homeostasis category in the two samples were higher than other samples (Figure S4). 235 

Interestingly, sample FW104 from group L3, which had the highest level of Sulfate (SO4) of all 236 

samples (Figure S3), also has the highest relative abundance of S cycling genes (Figure S4).  237 

Response ratios (rr) of functional genes were calculated for comparing their relative abundances 238 

between sample group L0 and each of other groups (L1, L2 and L3). Among all genes with 239 

significant response ratios, we found abundances of homeostasis genes were significantly higher 240 

in L2 than L0 (arrA and arxA; rr=3.41 and 4.8) and in L3 than L0 (corC, pcoA, mgtA and merP; 241 

rr =1.09-5.38), and abundance of one C degradation gene (ara) was significantly lower (rr = -242 

2.07) in L3 than L0 (Figure. 6). Meanwhile, a denitrification gene (nirK) was found to be more 243 

significantly abundant (rr = 1.76) in L3 than L0, which suggested a microbial response to higher 244 

nitrate concentrations in the L3 samples (Figure S3). Two oxygen-limitation-response genes, 245 

narH and narJ, from Stress category were more abundant (rr = 2.97 and 2.76) in L3 samples 246 

(DO=0.13-0.27) than L0 samples (DO=0.28-0.71), which suggested microbial response to low 247 

dissolved oxygen in highly contaminated wells. 248 

 249 

Discussion 250 

EcoFun-MAP provides an efficient and accessible tool for analyzing shotgun metagenomic 251 

sequencing data from the perspective of ecological functions. With the typical speed of analysis 252 
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from ~0.6 to ~4.1M reads/min, it helps overcome the computing barriers associated with deep 253 

functional profiling of microbes in a variety of environments. 254 

The high computing efficiency of EcoFun-MAP is due to several reasons. First, the reference 255 

database is built, cleaned and optimized with a clear focus and much smaller in size compared to 256 

other general databases. With our curation efforts, the EcoFun-MAP database only has 1.5% of 257 

the size of NCBI RefSeq database (81,027,309 protein sequences; Mar 13th, 2017) while still 258 

provides a comprehensive coverage of keys genes from important ecological functions and 259 

geochemical processes. Such reduction strategy has been shown a useful solution for speeding up 260 

high-throughput sequencing data analysis40. Second, fast tools were selected for EcoFun-MAP 261 

and contributed substantially to the speed of EcoFun-MAP. For example, FragGeneScan+ used 262 

for gene prediction is 5-50 times faster than FragGeneScan at no cost of accuracy41. HMMER 3 263 

is 100-1000 times faster than HMMER 242. DIAMOND can be 20,000 times faster than 264 

BLASTX23. Third, EcoFun-MAP can process metagenomes in parallel and is deployed on an 265 

HPC cluster, which gains additional acceleration from advanced hardware. In addition to 266 

computing speed, EcoFun-MAP is also highly scalable, which is quite important since the 267 

volume of sequencing data continues to increase.  268 

The reference database of EcoFun-MAP also has several unique features and advantages. 269 

First, the database has a clear microbial ecology focus compared to other recent tools annotating 270 

metagenomes with general metabolic genes, e.g., DRAM43 and METABOLIC44. The gene 271 

families were manually categorized into a hierarchical system that is similar as GeoChip33–36, 272 

which has been demonstrated consistently effective and easy to interpret in microbial ecology 273 

studies. Compared to FunGene45, a latest tool with a similar ecological focus, EcoFun-MAP 274 

covers 18 times more functional gene families as well as additional important function 275 
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categories, e.g., stress response and virulence. Second, the reference sequences of each 276 

functional gene were clustered (fClusters), which provide a resolution beyond gene family and 277 

allow stratified analysis by groups of closely related microorganisms. In addition, EcoFun-MAP 278 

offers distinct database modules in a widely accepted format, e.g., HMM models. These modules 279 

enable speed and accuracy adjustment, underlie flexibility for different applications, and are easy 280 

to adapt for future tools and to extend for new genes and sequences. In the future, we will 281 

continue to maintain and update EcoFun-MAP databases as new knowledge (e.g. metagenome 282 

assembled genomes and genes6,7,46–49) comes in as well as exploring rapid algorithms (e.g. k-mer 283 

exact match50–52) for further speedup. 284 

Apart from software tools like DRAM and METABOLIC, EcoFun-MAP is open for public 285 

use in the form of a website, so it is free of installation and configuration of dependencies or 286 

databases, and can be accessed using plain web browsers easily with Internet connection. While 287 

EcoFun-MAP was implemented and deployed based on advanced hardware and sophisticated 288 

bioinformatics tools, it requires little computer skills to use other than simple web-based user 289 

registration, uploading of datasets, and workflow selection or parameter setting. EcoFun-MAP is 290 

supported by an HPC infrastructure with fast CPUs, large memory, and hard disk space for 291 

public use. We consider this setup is ideal for data-intensive projects in microbial ecology and 292 

EcoFun-MAP should be highly accessible and usable to microbial ecologists in practice. 293 

While the accuracy of EcoFun-MAP is difficult to directly evaluate, we adopted several ways 294 

to ensure that it is accurate. First, the reference database of EcoFun-MAP is rigorously curated, 295 

which ensures analysis quality at the beginning. Second, we used an iterative procedure to 296 

generate HMMs in EcoFun-MAP and manually tuned a key parameter (e.g., e-value cutoff of 297 

HMM search) per gene family, which should be more accurate compared to using an arbitrary or 298 
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single universal parameter. In addition, EcoFun-MAP provides multiple predefined workflows 299 

accommodating disparate applications. The sensitivity is generally high for all workflows 300 

(~70%). The ultra-fast and fast workflows showed low precision due to read identity-based 301 

searches, but are still useful for explorative analyses where detections with strong evidence are 302 

not mandatory. For example, we recommend the ultra-fast and fast workflow for discovering 303 

novel genes or gene fragments. Reassuringly, all EcoFun-MAP workflows revealed similar 304 

trends in the analysis of metagenomes from groundwater samples. Since the conservative 305 

workflow had both high sensitivity (~85%) and precision (~86%) rate, as well as speed (1.2M 306 

reads/min. on average), we set it to the default mode for EcoFun-MAP. 307 

Conclusion and availability 308 

In this study, we developed EcoFun-MAP for functional analysis of shotgun metagenomic 309 

sequencing data from microbial ecology. EcoFun-MAP consists of references databases 310 

constructed with selective coverage of genes that are important to ecological functions, and 311 

multiple workflows for addressing disparate needs for speed and accuracy. Furthermore, 312 

EcoFun-MAP was implemented on the basis of High-Performance Computing (HPC) 313 

infrastructure with high accessible interfaces. Our analysis indicated that EcoFun-MAP is a fast 314 

and powerful pipeline for shotgun metagenome sequence data. EcoFun-MAP is open for public 315 

use and can be found available at our website: http://iegst1.rccc.ou.edu:8080/ecofunmap/.  316 

Material and Methods 317 

Selection of functional categories and genes 318 

We limited the applicable scope of EcoFun-MAP to general microbial ecology studies and 319 

selected a total of 17 major categories (Table 1) of microbial genes that are associated with 320 

geochemical processes and ecological functions. These genes have been on functional gene 321 
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arrays or GeoChip33–36, including Carbon (C), Nitrogen (N), Sulfur (S), and Phosphorus (P) 322 

cycling, antibiotic resistance, organic contaminant degradation, metal homeostasis, stress 323 

response, microbial defense, electron transferring, plant growth promotion, virulence, protists, 324 

viruses and others (metabolic pathways, pigment biosynthesis and gyrB). Then the functional 325 

genes are further divided into subcategories, yielding a three to four-level hierarchical 326 

organization: major category, primary subcategory, secondary category (optional), and functional 327 

gene. For example (Figure S1), the C cycling category (144 genes) consists of three primary 328 

subcategories, including C degradation (60 genes), C fixation (61 genes) and Methane (23 329 

genes). The primary subcategory of C degradation has 18 secondary subcategories (e.g., Starch 330 

degradation, Cellulose degradation and Lignin degradation), the C fixation has 8 secondary 331 

subcategories (e.g., Calvin cycle, Dicarboxylate/4-hydroxybutyrate cycle and 3-332 

hydroxypropionate bicycle), and the Methane has two secondary subcategories (i.e., Methane 333 

oxidation and Methanogenesis). Each secondary subcategory has the number of genes ranging 334 

from 1 to 21 (Figure S1). 335 

Retrieval of functional gene sequences 336 

National Center for Biotechnology Information (NCBI) Entrez databases53 were used as the 337 

source to retrieve functional gene sequences for constructing EcoFun-MAP databases based on 338 

GeoChip databases. We manually crafted a keyword-based query for each functional gene, and 339 

submitted it programmatically to the Entrez databases to search and retrieve both protein and 340 

nucleotide candidate sequences via Entrez Programming Utilities (E-utilities)53. A typical search 341 

query is designed to consist of all aliases and variants names of the corresponding gene known to 342 

us, as well as other NCBI search constraints (e.g., organism), braces and logic operators (e.g., 343 

AND, OR and NOT). By carefully crafting the keyword-based query, the relevancy of research 344 
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results can be improved as the number of the results drop, improving initial quality control 345 

before EcoFun-MAP database construction and reducing computational cost for later processing. 346 

For example, a keyword-based query for nifH gene (Suppl. Fig. 2) has returned 34,077 347 

nucleotide records and 31,522 protein records, which were much less than 100,728 nucleotide 348 

records and 82,722 protein records in total returned by simply using "nifH" as the search query 349 

(retrieval test date: Jan. 23rd, 2017), and successfully excluded irrelevant records, such as 350 

Sinorhizobium sp. partial nodA gene (accession number: Z95242.1) and Heliobacterium gestii 351 

partial anfH gene (accession number: AB100834.1). Next, from records retrieved using 352 

keyword-based query search, a minimum of 1 to a few hundred seed sequences were selected 353 

manually on the basis of two criteria: (i) seed sequences must be experimentally confirmed in 354 

literature, and (ii) seed sequences must be distinctive from each other. Finally, redundant records 355 

(i.e., records with identical GenBank ID and description) were removed. To this end, candidate 356 

sequences and seed sequences have been prepared for each selected EcoFun-MAP gene and are 357 

ready for EcoFun-MAP database construction. 358 

 359 

Building EcoFun-MAP reference database 360 

Reference database of EcoFun-MAP was built using the aforementioned candidate and seed 361 

sequences. The building process involves several key steps, including seed sequence alignment, 362 

HMM building, HMM searching, sequence clustering, DIAMOND index building and BLAST 363 

index building were implemented using ClustalW54, hmmbuild (HMMER342), hmmsearch 364 

(HMMER3), CD-HIT55, DIAMOND and MAKEBLASTDB37, respectively. All of these tools 365 

were used with default parameters, except the CD-HIT used a customized threshold of clustering 366 

similarity at 95%. 367 
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Design of EcoFun-MAP workflows 368 

For the workflows, the key processing steps, including quality trimming, gene predicting, HMM 369 

searching, DIAMOND index searching and BLAST index searching were implemented using 370 

Btrim, FragGeneScan+, hmmsearch (HMMER3), DIAMOND and BLASTN, respectively. The 371 

workflows have preset parameters for each step, and can also accept users' changes on the 372 

parameters for meeting specific speed or accuracy needs. For example, the Btrim used in the 373 

quality trimming for all the workflows has two major parameters: moving window size and 374 

average quality cutoff within the window. The default moving window size was set to 5 and the 375 

default average quality cutoff was set to 20 by EcoFun-MAP, but users can lower the moving 376 

window size or set higher the average quality cutoff to increase the quality of trimmed reads. All 377 

analyses in this study used preset parameters unless otherwise was mentioned. 378 

Deployment of EcoFun-MAP on HPC 379 

The databases and workflows of EcoFun-MAP were deployed on an HPC cluster with a web-380 

based Graphic User Interface (GUI) for access and job submission (Fig. 3). A single EcoFun-381 

MAP job submission requires at the beginning a data file and all parameters that will be used for 382 

the selected workflow. EcoFun-MAP provides an FTP application for data file transferring and 383 

an HTTP application (website) to accept parameter settings. After being submitted, a job will be 384 

sent to the HPC cluster in a "first in, first out" (FIFO) order for further EcoFun-MAP processing. 385 

When executing a job, the HPC cluster will (i) break down the job into small pieces, (ii) map job 386 

pieces to available nodes, (iii) run the selected workflow for the pieces in parallel, and (iv) 387 

collect and reduce outputs of all pieces, and prepare final result for downloading by the job 388 

submitter. The implementation of EcoFun-MAP depends on both open-source software and in-389 

house scripts. The FTP application was provided on the basis of installation and configuration of 390 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2022.04.05.481366doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.05.481366
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

vsftpd (version 3.0.3). The parameter submission website was built using Django (version 391 

1.11.5), In-house Perl, Python, Shell and SLURM job scheduling scripts were also used 392 

throughout EcoFun-MAP implementation. Their major functions or roles included the following: 393 

(i) job management, (ii) calling or executing bioinformatics tools, (iii) data file format 394 

conversion (e.g., convert FASTQ formatted file into a FASTA one), (iv) breaking down, 395 

mapping and reducing dataset and (v) data I/O and transferring. At last, the HPC cluster hosting 396 

EcoFun-MAP currently has two types (type I and type II) of computing nodes, and each type has 397 

5 nodes, which consists of a total of 10 nodes for handling EcoFun-MAP tasks. The type I node 398 

has 24 cores and 64GB RAM, and the type II node has 24 cores and 128GB RAM. The HPC 399 

cluster also provides 128TB hard disk space for temporal storage of input, intermediate data and 400 

result from tasks of EcoFun-MAP. 401 

Experimental datasets 402 

Experimental datasets for showcasing and evaluating EcoFun-MAP were sequenced from 403 

groundwater samples from the Oak Ridge Integrated Field Research Challenge site38 (OR-IFRC; 404 

Oak Ridge, TN). The OR-IFRC site has gradients of salinity, pH and contaminants including 405 

Uranium, nitrate, sulfide, and other heavy metals39,56. In this study, 20 L groundwater was 406 

collected by 0.2-μm-pore-size filter from each of 12 locations under different contamination 407 

levels: background (L0), low- (L1), intermediate- (L2), and high-contamination (L3), with 3 408 

samples for each level. Microbial community DNA was extracted from each sample using a 409 

modification of the Miller method39,56,57.  The metagenome of each sample was sequenced using 410 

the shotgun method with HiSeq 3000 sequencer (Illumina, San Diego, CA). Upon completing 411 

HiSeq running, quality control was performed on the resulting raw reads. Duplicates and reads 412 

with ambiguous bases (>1) and poor-quality (average score <20) were discarded. Poor-quality 413 
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bases (quality score <20) were trimmed. Finally, about 1,816.7 million of 150 bp reads were 414 

generated in total, which counted for about 272.5 Gbp data. The data size for each sample ranges 415 

from about 11.9 Gbp (GW199) to about 39.9 Gbp (FW300).  More information about HiSeq 416 

output for each sample can be found in supplementary Table S2. 417 

 418 

Acknowledgements  419 

The development of EcoFun-MAP was supported by the US Department of Energy, Office of 420 

Science, Genomic Science Program (Award Number: DE-SC0004601 and DE-SC0010715), and 421 

Office of Biological and Environmental Research's (OBER) Biological Systems Research on the 422 

Role of Microbial Communities in Carbon Cycling program (Award number: DE-SC0004730 423 

and DE-SC001057). The analysis of groundwater samples was supported by ENIGMA- 424 

Ecosystems and Networks Integrated with Genes and Molecular Assemblies 425 

(http://enigma.lbl.gov), a Scientific Focus Area Program at Lawrence Berkeley National 426 

Laboratory and is based upon work supported by the U.S. Department of Energy, Office of 427 

Science, Office of Biological & Environmental Research (contract number: DE-AC02-428 

05CH11231).  The development, implementation and maintenance of EcoFun-MAP by N.X. and 429 

D.N. were also partially supported by NSF Grants EF-2025558 and DEB-2129235. 430 

431 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2022.04.05.481366doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.05.481366
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

References 432 

1. Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348, 1261359 433 

(2015). 434 

2. Fierer, N. et al. Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie 435 

soils in the United States. Science 342, 621–624 (2013). 436 

3. Guo, X. et al. Climate warming leads to divergent succession of grassland microbial communities. Nat. 437 

Clim. Change 8, 813–818 (2018). 438 

4. Schimel, J. Microbial ecology: Linking omics to biogeochemistry. Nat. Microbiol. 1, 1–2 (2016). 439 

5. Zhou Jizhong et al. High-Throughput Metagenomic Technologies for Complex Microbial Community 440 

Analysis: Open and Closed Formats. mBio 6, e02288-14. 441 

6. Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands 442 

the tree of life. Nat. Microbiol. 2, 1533–1542 (2017). 443 

7. Nayfach, S., Shi, Z. J., Seshadri, R., Pollard, K. S. & Kyrpides, N. C. New insights from uncultivated 444 

genomes of the global human gut microbiome. Nature 568, 505–510 (2019). 445 

8. Crits-Christoph, A., Diamond, S., Butterfield, C. N., Thomas, B. C. & Banfield, J. F. Novel soil bacteria 446 

possess diverse genes for secondary metabolite biosynthesis. Nature 558, 440–444 (2018). 447 

9. Scholz, M. B., Lo, C.-C. & Chain, P. S. Next generation sequencing and bioinformatic bottlenecks: the 448 

current state of metagenomic data analysis. Curr. Opin. Biotechnol. 23, 9–15 (2012). 449 

10. Logares, R. et al. Metagenomic 16S rDNA I llumina tags are a powerful alternative to amplicon 450 

sequencing to explore diversity and structure of microbial communities. Environ. Microbiol. 16, 2659–451 

2671 (2014). 452 

11. Hong, S., Bunge, J., Leslin, C., Jeon, S. & Epstein, S. S. Polymerase chain reaction primers miss 453 

half of rRNA microbial diversity. ISME J. 3, 1365–1373 (2009). 454 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2022.04.05.481366doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.05.481366
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

12. Sharpton, T. J. et al. PhylOTU: a high-throughput procedure quantifies microbial community 455 

diversity and resolves novel taxa from metagenomic data. PLoS Comput. Biol. 7, e1001061 (2011). 456 

13. Nayfach, S. & Pollard, K. S. Toward accurate and quantitative comparative metagenomics. Cell 457 

166, 1103–1116 (2016). 458 

14. Andrews, S. FastQC: a quality control tool for high throughput sequence data. (2010). 459 

15. Kong, Y. Btrim: a fast, lightweight adapter and quality trimming program for next-generation 460 

sequencing technologies. Genomics 98, 152–153 (2011). 461 

16. Li, S. & Chou, H.-H. LUCY2: an interactive DNA sequence quality trimming and vector removal 462 

tool. Bioinformatics 20, 2865–2866 (2004). 463 

17. Peng, Y., Leung, H. C., Yiu, S.-M. & Chin, F. Y. Meta-IDBA: a de Novo assembler for metagenomic 464 

data. Bioinformatics 27, i94–i101 (2011). 465 

18. Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile 466 

metagenomic assembler. Genome Res. 27, 824–834 (2017). 467 

19. Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site 468 

identification. BMC Bioinformatics 11, 119–119 (2010). 469 

20. Rho, M., Tang, H. & Ye, Y. FragGeneScan: predicting genes in short and error-prone reads. 470 

Nucleic Acids Res. 38, e191–e191 (2010). 471 

21. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search 472 

programs. Nucleic Acids Res. 25, 3389–3402 (1997). 473 

22. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–474 

359 (2012). 475 

23. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. 476 

Methods 12, 59–60 (2015). 477 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2022.04.05.481366doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.05.481366
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

24. Pruitt, K. D., Tatusova, T. & Maglott, D. R. NCBI Reference Sequence (RefSeq): a curated non-478 

redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 33, D501–479 

D504 (2005). 480 

25. Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Wheeler, D. L. GenBank. Nucleic 481 

Acids Res. 33, D34–D38 (2005). 482 

26. Kanehisa, M. et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 36, 483 

D480–D484 (2007). 484 

27. Finn, R. D. et al. Pfam: the protein families database. Nucleic Acids Res. 42, D222–D230 (2014). 485 

28. Overbeek, R. et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems 486 

Technology (RAST). Nucleic Acids Res. 42, D206–D214 (2014). 487 

29. Markowitz, V. M. et al. IMG/M 4 version of the integrated metagenome comparative analysis 488 

system. Nucleic Acids Res. 42, D568–D573 (2014). 489 

30. Glass, E. M., Wilkening, J., Wilke, A., Antonopoulos, D. & Meyer, F. Using the metagenomics 490 

RAST server (MG-RAST) for analyzing shotgun metagenomes. Cold Spring Harb. Protoc. 2010, pdb-491 

prot5368 (2010). 492 

31. Seshadri, R., Kravitz, S. A., Smarr, L., Gilna, P. & Frazier, M. CAMERA: a community resource for 493 

metagenomics. PLoS Biol. 5, e75 (2007). 494 

32. Su, X., Pan, W., Song, B., Xu, J. & Ning, K. Parallel-META 2.0: enhanced metagenomic data 495 

analysis with functional annotation, high performance computing and advanced visualization. PloS 496 

One 9, e89323 (2014). 497 

33. He, Z. et al. GeoChip: a comprehensive microarray for investigating biogeochemical, ecological 498 

and environmental processes. ISME J. 1, 67–77 (2007). 499 

34. He, Z. et al. GeoChip 3.0 as a high-throughput tool for analyzing microbial community 500 

composition, structure and functional activity. ISME J. 4, 1167–1179 (2010). 501 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2022.04.05.481366doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.05.481366
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

35. Tu, Q. et al. GeoChip 4: a functional gene-array-based high-throughput environmental 502 

technology for microbial community analysis. Mol. Ecol. Resour. 14, 914–928 (2014). 503 

36. Shi, Z. et al. Functional gene array-based ultrasensitive and quantitative detection of microbial 504 

populations in complex communities. MSystems 4, e00296-19 (2019). 505 

37. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009). 506 

38. Hwang, C. et al. Bacterial community succession during in situ uranium bioremediation: spatial 507 

similarities along controlled flow paths. ISME J. 3, 47–64 (2009). 508 

39. Smith, M. B. et al. Natural bacterial communities serve as quantitative geochemical biosensors. 509 

MBio 6, e00326-15 (2015). 510 

40. Silva, G. G. Z., Green, K. T., Dutilh, B. E. & Edwards, R. A. SUPER-FOCUS: a tool for agile functional 511 

analysis of shotgun metagenomic data. Bioinformatics 32, 354–361 (2016). 512 

41. Kim, D. et al. FragGeneScan-Plus for scalable high-throughput short-read open reading frame 513 

prediction. in 1–8 (IEEE, 2015). 514 

42. Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011). 515 

43. Shaffer, M. et al. DRAM for distilling microbial metabolism to automate the curation of 516 

microbiome function. Nucleic Acids Res. 48, 8883–8900 (2020). 517 

44. Zhou, Z. et al. METABOLIC: high-throughput profiling of microbial genomes for functional traits, 518 

metabolism, biogeochemistry, and community-scale functional networks. Microbiome 10, 33 (2022). 519 

45. Fish, J. et al. FunGene: the functional gene pipeline and repository. Front. Microbiol. 4, (2013). 520 

46. Almeida, A. et al. A new genomic blueprint of the human gut microbiota. Nature 568, 499–504 521 

(2019). 522 

47. Pasolli, E. et al. Extensive Unexplored Human Microbiome Diversity Revealed by Over 150,000 523 

Genomes  from Metagenomes Spanning Age, Geography, and Lifestyle. Cell 176, 649-662.e20 (2019). 524 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2022.04.05.481366doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.05.481366
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

48. Almeida, A. et al. A unified sequence catalogue of over 280,000 genomes obtained from the 525 

human gut microbiome. bioRxiv 762682 (2019) doi:10.1101/762682. 526 

49. Coelho, L. P. et al. Towards the biogeography of prokaryotic genes. Nature 601, 252–256 (2022). 527 

50. Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence classification using exact 528 

alignments. Genome Biol. 15, R46 (2014). 529 

51. Breitwieser, F. P., Baker, D. N. & Salzberg, S. L. KrakenUniq: confident and fast metagenomics 530 

classification using unique k-mer counts. Genome Biol. 19, 198 (2018). 531 

52. Shi, Z. J., Dimitrov, B., Zhao, C., Nayfach, S. & Pollard, K. S. Fast and accurate metagenotyping of 532 

the human gut microbiome with GT-Pro. Nat. Biotechnol. 1–10 (2021). 533 

53. Wheeler, D. L. et al. Database resources of the national center for biotechnology information. 534 

Nucleic Acids Res. 36, D13–D21 (2007). 535 

54. Li, K.-B. ClustalW-MPI: ClustalW analysis using distributed and parallel computing. Bioinformatics 536 

19, 1585–1586 (2003). 537 

55. Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or 538 

nucleotide sequences. Bioinformatics 22, 1658–1659 (2006). 539 

56. He, Z. et al. Microbial functional gene diversity predicts groundwater contamination and 540 

ecosystem functioning. MBio 9, e02435-17 (2018). 541 

57. Hazen, T. C. et al. Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330, 542 

204–208 (2010). 543 

 544 

  545 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2022.04.05.481366doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.05.481366
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 
 

Figure Legends 546 

Figure 1. The flowchart of construction of databases/datasets in the development of EcoFun-547 

MAP. Cylinders represent starting (green), intermediate (blue) and ending (orange) databases. 548 

Grey rectangles represent processing steps in construction, which take the content of databases or 549 

output of immediate upstream processing steps as input for processing. Four database modules 550 

have been constructed for EcoFun-MAP with the flowchart: a seed sequence-based DIAMOND 551 

index (EFM-DI-DB-S), Hidden Markov Models (HMMs) (EFM-HMM-DB), a functional gene 552 

reference sequence-based DIAMOND index (EFM-DI-DB-R) and a functional gene reference 553 

sequence based NCBI-BLAST index (EFM-BLAST-DB). 554 

Figure 2. The flowchart of five workflows in EcoFun-MAP, which include ultra-fast (green 555 

background), fast (purple background), moderate (cyan background), conservative (yellowgreen 556 

background), and ultra-conservative (red background). The preprocessing steps are on the grey 557 

ground. Cylinders represent starting (green), intermediate (blue) and ending (orange) databases. 558 

Grey rectangles represent processing steps in construction, which take the content of databases or 559 

output of immediate upstream processing steps as input for processing. Shapes of yellow 560 

documents represent the resulting matrix-like table. 561 

Figure 3. The scheme of implementation and deployment of EcoFun-MAP. Submissions of 562 

EcoFun-MAP jobs (green background) are handled by a standalone server. Further processing 563 

and execution of the jobs are performed on an HPC cluster. 564 

Figure 4. Detrended Correspondence Analysis (DCA) of functional gene compositions of 565 

metagenomes from 12 groundwater samples. Analyses of functional gene compositions based on 566 

results from five workflows of EcoFun-MAP are provided. Analysis based on the result from 567 

annotation based on SEED subsystem (boxed by dashed line) is also provided to contrast. Each 568 
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sample is represented by a distinctive color. Cycles, squares, diamonds and triangles are used for 569 

showing samples from groups of L0, L1, L2 and L3, which are also cycled with green, yellow, 570 

orange and red eclipses, respectively. 571 

Figure 5. Richness of functional genes in metagenomes from 12 groundwater samples. A total of 572 

six boxplots show the richness of functional genes based on results from five workflows of 573 

EcoFun-MAP, as well as results from annotation based on SEED subsystem (boxed by dashed 574 

line). Boxes in color of green, yellow, orange and red are used for showing richness of functional 575 

genes for samples from groups of L0, L1, L2 and L3, respectively. 576 

Figure 6. Response ratios of functional genes from comparisons between metagenomes from 577 

contaminated well samples and background well samples. Only significantly (p value < 0.05 in 578 

ANOVA followed by TukeyHSD) changed genes are included in the plot. 579 

Figure S1. An example of organization of functional genes in EcoFun-MAP databases. 580 

Figure S2. An example showing components that constitute a typical keyword query 581 

Figure S3. Heatmap showing the levels of measurements of environmental factors among 12 582 

groundwater samples. The concentrations of pollutants were scaled to between 0 and 1 for a 583 

better visualization. 584 

Figure S4. Relative abundances of selected major categories (based on result from Ultra-585 

conservative workflow) in metagenomes from 12 groundwater samples.  586 
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Figures 588 

Figure 1 589 
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Figure 2 593 
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Figure 3 598 
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Figure S3 617 
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