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In an effort to discover anaerobic bacteria capable of lignin degradation, we isolated “Ente-
robacter lignolyticus” SCF1 on minimal media with alkali lignin as the sole source of carbon. 
This organism was isolated anaerobically from tropical forest soils collected from the Short 
Cloud Forest site in the El Yunque National Forest in Puerto Rico, USA, part of the Luquillo 
Long-Term Ecological Research Station. At this site, the soils experience strong fluctuations in 
redox potential and are net methane producers. Because of its ability to grow on lignin anae-
robically, we sequenced the genome. The genome of “E. lignolyticus” SCF1 is 4.81 Mbp with 
no detected plasmids, and includes a relatively small arsenal of lignocellulolytic carbohy-
drate active enzymes. Lignin degradation was observed in culture, and the genome revealed 
two putative laccases, a putative peroxidase, and a complete 4-hydroxyphenylacetate degra-
dation pathway encoded in a single gene cluster. 

Abbreviations: EMBL- European Molecular Biology Laboratory,  NCBI- National Center for 
Biotechnology Information (Bethesda, MD, USA), RDP- Ribosomal Database Project (East 
Lansing, MI, USA) 

Introduction 
One of the biggest barriers to efficient lignocellu-
lose deconstruction is the problem of lignin, both 
occluding the action of cellulases and as wasteful 
lignin by-products. Tropical forest soils are the 
sites of very high rates of decomposition, accom-
panied by very low and fluctuating redox potential 
conditions [1,2]. Because early stage decomposi-
tion is typically dominated by fungi and the free-
radical generating oxidative enzymes phenol oxi-
dase and peroxidase [3,4], we targeted anaerobic 
tropical forest soils with the idea that they would 
be dominated by bacterial rather than fungal de-
composers. To discover organisms that were ca-
pable of breaking down lignin without the use of 

oxygen free radicals, we isolated “Enterobacter 
lignolyticus” SCF1 under anaerobic conditions us-
ing lignin as the sole carbon source. In addition to 
this, it has been observed to withstand high con-
centrations of ionic liquids [5], and thus was tar-
geted for whole genome sequencing. 

Organism information 
“E. lignolyticus” SCF1 was isolated from soil col-
lected from the Short Cloud Forest site in the El 
Yunque experimental forest, part of the Luquillo 
Long-Term Ecological Research Station in Luquil-
lo, Puerto Rico, USA (Table 1). Soils were diluted 
in water and inoculated into roll tubes containing 
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MOD-CCMA media with alkali lignin as the source 
of carbon. MOD-CCMA media consists of 2.8 g L-1 
NaCl, 0.1 g L-1 KCl, 27 mM MgCl2, 1 mM CaCl2, 1.25 
mM NH4Cl, 9.76 g L-1 MES, 1.1 ml L-1 K2HPO4, 12.5 
ml L-1 trace minerals [19,20], and 1 ml L-1 Thauer’s 
vitamins [21]. Tubes were incubated at room 
temperature for up to 12 weeks, at which point 
the colony was picked, grown in 10% tryptic soy 
broth (TSB), and characterized. 
When grown on 10% TSB agar plates, SCF1 colo-
nies are translucent white, slightly irregular in 
shape with wavy margins, and have a shiny 
smooth surface. SCF1 was determined to be a non-
sporulating strain based on a Pasteurization test. 
To do this, a suspension of SCF1 cells was heated 
at 80°C for 10 minutes. 5μl of heated culture and 
non-heated control culture were both spotted 
onto 10% TSB agar and incubated for growth for 3 
days at room temperature. The non-heated cells 

grew while the heated culture did not, indicating 
the absence of heat-resistant spores. 
For initial genotyping and for validating the isola-
tion, the small subunit ribosomal RNA gene was 
sequenced by Sanger sequencing using the uni-
versal primers 8F and 1492R [22].The 16S rRNA 
sequence places “Enterobacter lignolyticus” SCF1 
in the family Enterobacteriaceae. However, 16S 
rRNA sequence is not sufficient to clearly define 
the evolutionary history of this region of the 
Gammaproteobacteria, and initially led to the in-
correct classification of “E. lignolyticus” SCF1 as a 
member of the Enterobacter cloacae species. We 
have rectified its phylogenetic placement using 
the MicrobesOnline species tree [23], which is 
generated using 69 single-copy near-universal 
protein families [24] aligned by MUSCLE [25] with 
tree construction using FastTree-2 [26] (Figure 1). 

 

 
Figure 1. Phylogenetic tree highlighting the position of “Enterobacter lignolyticus” SCF1 rela-
tive to other type and non-type strains within the Enterobacteriaceae. Strains shown are those 
within the Enterobacteriaceae having corresponding NCBI genome project ids listed within 
[27]. The tree is based on a concatenated MUSCLE alignment [25] of 69 near-universal sin-
gle-copy COGs (COGs 12, 13, 16, 18, 30, 41, 46, 48, 49, 52, 60, 72, 80, 81, 86, 87, 88, 89, 
90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 102, 103, 104, 105, 124, 126, 127, 130, 143, 149, 
150, 162, 164, 172, 184, 185, 186, 197, 198, 200, 201, 202, 215, 237, 244, 256, 284, 441, 
442, 452, 461, 504, 519, 522, 525, 528, 532, 533, 540, 541, 552). The tree was constructed 
using FastTree-2 [26] using the JTT model of amino acid evolution [28]. FastTree-2 infers ap-
proximate maximum-likelihood phylogenetic placements and provides local support values 
based on the Shimodaira-Hasegawa test [29]. Solid circles represent local support values 
over 90% and open circles over 80%. Erwinia tasmaniensis was used as an outgroup. 
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Table 1. Classification and general features of “Enterobacter lignolyticus” SCF1 

MIGS ID Property Term Evidence code 

 

Current classification 

Domain Bacteria TAS[6] 

Phylum Proteobacteria TAS[7] 

Class Gammaproteobacteria TAS[8,9] 

Order Enterobacteriales TAS[10] 

Family Enterobacteriaceae TAS[11-13] 

Genus Enterobacter TAS[11,13-16] 

Species “Enterobacter lignolyticus”  

Strain SCF  

 Gram stain negative NAS 

 Cell shape rod IDA 

 Motility motile via flagella IDA 

 Sporulation non-sporulating IDA 

 Temperature range Mesophile  

 Optimum temperature 30°C  

 Carbon source glucose, xylose, others; see Table 8 IDA 

MIGS-6 Habitat 
Soil collected from a subtropical lower 
montane wet forest  

TAS [17] 

MIGS-6.3 Salinity 

Can tolerate up to 0.75 M NaCl, 1 M KCl, 
0.3 M NaOAc, 0.3 M KOAc. Growth in 
10% trypticase soy broth is improved with 
0.125 M NaCl 

TAS [5] 

MIGS-22 Oxygen 
facultative aerobe; grows well under 
completely oxic and anoxic conditions 

IDA 

MIGS-15 Biotic relationship free-living IDA 

MIGS-14 Pathogenicity no  

MIGS-4 Geographic location Luquillo Experimental Forest,  Puerto Rico IDA 

MIGS-5 Sample collection time July 2009 IDA 

MIGS-4.1 Latitude  18.268N IDA 

MIGS-4.2 Longitude 65.760 W IDA 

MIGS-4.3 Depth 10 cm IDA 

MIGS-4.4 Altitude 1027 msl IDA 

Evidence codes - IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report 
exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, 
isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). 
These evidence codes are from the Gene Ontology project [18]. 
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Genome sequencing information 
Genome project history 
The genome was selected based on the ability of 
“E. lignolyticus” SCF1 to grow on and degrade lig-
nin anaerobically. The genome sequence was 
completed on August 9, 2010, and presented for 
public access on 15 October 2010 by Genbank. 

Finishing was completed at Los Alamos National 
Laboratory. A summary of the project information 
is shown in Table 2, which also presents the 
project information and its association with MIGS 
version 2.0 compliance [30]. 

Table 2. Project information 
MIGS ID Property Term 
MIGS-31 Finishing quality Finished 

MIGS-28 Libraries used Illumina GAii shotgun, 454 Titanium Standard, and two 454 paired-end 

MIGS-29 Sequencing platforms Illumina, 454 

MIGS-31.2 Fold coverage 40× for 454 and 469× for Illumina 

MIGS-30 Assemblers Newbler, Velvet, Phrap 

MIGS-32 Gene calling method Prodigal 1.4, GenePRIMP 

 Genbank ID CP002272 

 Genbank Date of Release October 15, 2010 

 GOLD ID Gc01746 

 Project relevance Anaerobic lignin, switchgrass decomposition 

Growth conditions and DNA isolation 
“E. lignolyticus” SCF1 grows well aerobically and 
anaerobically, and was routinely cultivated aero-
bically in 10% tryptic soy broth (TSB) with shak-
ing at 200 rpm at 30°C. DNA for sequencing was 
obtained using the Qiagen Genomic-tip kit and fol-
lowing the manufacturer’s instructions for the 
500/g size extraction. Three column preparations 
were necessary to obtain 50 μg of high molecular 
weight DNA. The quantity and quality of the ex-
traction were checked by gel electrophoresis us-
ing JGI standards. 

Genome sequencing and assembly 
The draft genome of “Enterobacter lignolyticus” SCF1 
was generated at the DOE Joint Genome Institute 
(JGI) using a combination of Illumina [31] and 454 
technologies [32]. For this genome we constructed 
and sequenced an Illumina GAii shotgun library 
which generated 50,578,565 reads totaling 3,844 
Mb, a 454 Titanium standard library which generat-
ed 643,713 reads and two paired end 454 libraries 
with average insert sizes of 12517 +/- 3129 bp kb 
and 10286 +/- 2571 bp which generated 346,353 
reads totaling 339.3 Mb of 454 data. All general as-
pects of library construction and sequencing per-
formed at the JGI can be found at the JGI website 
[33].  

The initial draft assembly contained 28 contigs in 1 
scaffold. The 454 Titanium standard data and the 
454 paired end data were assembled together with 
Newbler, version 2.3. The Newbler consensus se-
quences were computationally shredded into 2 kb 
overlapping fake reads (shreds). Illumina sequenc-
ing data was assembled with VELVET, version 0.7.63 
[34], and the consensus sequences were computa-
tionally shredded into 1.5 kb overlapping fake reads 
(shreds). We integrated the 454 Newbler consensus 
shreds, the Illumina VELVET consensus shreds and 
the read pairs in the 454 paired end library using 
parallel phrap, version SPS - 4.24 (High Performance 
Software, LLC). The software Consed [35-37] was 
used in the following finishing process. Illumina data 
was used to correct potential base errors and in-
crease consensus quality using the software Polisher 
developed at JGI (Alla Lapidus, unpublished). Possi-
ble mis-assemblies were corrected using gapResolu-
tion (Cliff Han, unpublished), Dupfinisher [38], or 
sequencing cloned bridging PCR fragments with 
subcloning. Gaps between contigs were closed by 
editing in Consed, by PCR and by Bubble PCR (J-F 
Cheng, unpublished) primer walks. A total of 198 
additional reactions were necessary to close gaps 
and to raise the quality of the finished sequence.  
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The total size of the genome is 4,814,049 bp and 
the final assembly is based on 191.3 Mb of 454 
draft data, which provided an average 40× cover-
age of the genome, and 2249.8 Mb of Illumina draft 
data, which provided an average 469× coverage of 
the genome; the coverage from different technolo-
gies is reported separately because they have dif-
ferent error patterns. 

Genome annotation 
Protein coding genes were identified using Prodi-
gal [39] and tRNA, rRNA and other RNA genes us-
ing tRNAscan-SE [40], RNAmmer [41] and Rfam 
[42] as part of the ORNL genome annotation pipe-
line followed by a round of manual curation using 
the JGI GenePRIMP pipeline [43]. The predicted 
CDSs were translated and used to search the Na-
tional Center for Biotechnology Information 
(NCBI) nonredundant database, UniProt, TIGR-
Fam, Pfam, PRIAM, KEGG, COG, and InterPro data-
bases. Additional gene prediction analysis and 
functional annotation were performed within the 
Integrated Microbial Genomes - Expert Review 
(IMG-ER) platform [44] using the JGI standard an-
notation pipeline [45,46]. 

Genome properties 
The genome consists of a 4,814,049 bp circular 
chromosome with a GC content of 57.02% (Table 
3 and Figure 2). Of the 4,556 genes predicted, 
4,449 were protein-coding genes, and 107 RNAs; 
50 pseudogenes were also identified. The majority 
of the protein-coding genes (85.8%) were as-
signed with a putative function while the remain-
ing ones were annotated as hypothetical proteins. 
The distribution of genes into COGs functional cat-
egories is presented in Table 4, Table5 and Table 
6. 

Lignocellulose degradation pathways 
“E. lignolyticus” SCF1 has a relatively small arsenal of 
lignocellulolytic carbohydrate active enzymes, includ-
ing a single GH8 endoglucanase, and a GH3 beta-
glucosidase, but no xylanase or beta-xylosidase. Table 
7 provides a more complete list of lignocellulolytic 
enzymes. The genome also contains a large number of 
saccharide and oligosaccharide transporters, includ-
ing several ribose ABC transporters, a xylose ABC 
transporter (Entcl_0174-0176), and multiple cellobi-
ose PTS transporters (Entcl_1280, Entcl_2546-2548, 
Entcl_3764, Entcl_4171-4172). 

 

Table 3. Nucleotide content and gene count levels of the genome 

Attribute Value % of Total 

Genome size (bp) 4,814,049 100.00% 

DNA coding region (bp) 4,312,328 89.58% 

DNA G+C content (bp) 2,744,879 57.02% 

Number of replicons 1  
Extrachromosomal elements 0  
Total genes 4,556 100.00% 

RNA genes 107 2.35% 

rRNA operons 7  
Protein-coding genes 4,449 97.65% 

Pseudo genes 50 1.10% 

Genes with function prediction 3,909 85.80% 

Genes in paralog clusters 823 18.06% 

Genes assigned to COGs 3,743 82.16% 

Genes assigned Pfam domains 3,995 87.69% 

Genes with signal peptides 1,009 22.15% 

Genes with transmembrane helices 1,108 24.32% 

CRISPR-associated genes (CAS) 0 % of Total 
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Figure 2. Graphical circular map of the genome. From outside to the center: Genes on forward strand (color by 
COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, 
other RNAs black), GC content, GC skew. 

 
The mechanisms for lignin degradation in bacteria 
are still poorly understood. Two multi-copper oxidas-
es (putative laccases) and a putative peroxidase (see 
Table 7) may be involved in oxidative lignin degrada-
tion. We also found multiple glutathione S-transferase 
proteins, and it is possible that one or more of these 
may be involved in cleavage of beta-aryl ether linkag-
es, as is the case with LigE/LigF in Sphingomonas 
paucimobilis [49]. However, “E. lignolyticus” SCF1 
does not seem to posses the core protocatechuate and 

3-O-methylgallate degradation pathways responsible 
for lignin catabolism in S. paucimobilis. Instead, lignin 
catabolism may proceed via homoprotocatechuate 
through the 4-hydroxyphenylacetate degradation 
pathway, encoded on a gene cluster conserved be-
tween other Enterobacter, Klebsiella, and some E. coli 
strains (Figures 3, 4). 
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Lignin degradation 
We have grown SCF1 in xylose minimal media 
with and without lignin, and measured both cell 
counts (by acridine orange direct counts) and lig-
nin degradation (by change in absorbance at 280 
nm) over time. Lignin degradation was substantial 
after two days (left), and significantly enhanced 

growth of cells in culture (right); data are ex-
pressed as mean with standard deviation (n=3, 
Figure 5). Further studies will explore the moie-
ties of lignin used in anaerobic growth as well as 
explore growth on and utilization of other types of 
lignin. 

Table 4. Number of genes associated with the 25 general COG functional categories 

Code Value %agea Description 

J 184 4.37 Translation 

A 1 0.02 RNA processing and modification 

K 360 8.54 Transcription 

L 155 3.68 Replication, recombination and repair 

B 0 0 Chromatin structure and dynamics 

D 33 0.78 Cell cycle control, mitosis and meiosis 

Y 0 0 Nuclear structure 

V 48 1.14 Defense mechanisms 

T 219 5.20 Signal transduction mechanisms 

M 239 5.67 Cell wall/membrane biogenesis 

N 138 3.27 Cell motility 

Z 0 0 Cytoskeleton 

W 1 0.02 Extracellular structures 

U 150 3.56 Intracellular trafficking and secretion 

O 140 3.32 Posttranslational modification, protein turnover, chaperones 

C 275 6.52 Energy production and conversion 

G 432 10.25 Carbohydrate transport and metabolism 

E 415 9.85 Amino acid transport and metabolism 

F 98 2.33 Nucleotide transport and metabolism 

H 176 4.18 Coenzyme transport and metabolism 

I 108 2.56 Lipid transport and metabolism 

P 235 5.58 Inorganic ion transport and metabolism 

Q 85 2.02 Secondary metabolites biosynthesis, transport and catabolism 

R 409 9.70 General function prediction only 

S 314 7.45 Function unknown 

- 813 17.84 Not in COGs 

a) The total is based on the total number of protein coding genes in the annotated genome. 
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Table 5. Number of non-orthologous protein-coding genes found in “Enterobacter lignolyticus” SCF1 with respect to related genomes 

Species Number of distinct genes in “E. lignolyticus” SCF1 

Enterobacter sp. 638 1,580 

Enterobacter cancerogenus ATCC 35316 1,551* 

Enterobacter cloacae ATCC 13047 2,891* 

Klebsiella pneumoniae 342 1,389 

Klebsiella pneumoniae MGH 78578 1,451 

Klebsiella pneumoniae NTUH-K2044 1,424 

Klebsiella variicola At-22 1,394 

Citrobacter koseri ATCC BAA-895 1,507 

Citrobacter rodentium ICC168 1,682 

Escherichia coli K-12 MG1655 1,654 

Salmonella enterica Typhi Ty2 1,811 

Cronobacter turicensis z3032 1,875 

Cronobactersakazakii ATCC BAA-894 1,918 

Erwinia tasmaniensis Et1/99 2,392 

Protein-coding genes distinct in “E. lignolyticus” SCF1 
compared with all orthologous genes found  
in above genomes 

643 

*Based on incompletely annotated genome. 

Phenotypic Microarray 
We used the Biolog phenotypic microarray to test 
the range of growth conditions. For each of the 
eight plates in the array, “E. lignolyticus” SCF1 cells 
were grown up on 10% TSB agar plates, scraped 
off and resuspended in 20mM D-Glucose MOD-
CCMA, adjusted to 0.187 OD, 1× concentrate of 
Biolog Dye Mix G added, and then inoculated. PM 
plates include two plates with different carbon 
sources (PM 1 and 2a), one plate of different sim-
ple nitrogen sources (PM 3b), one plates of phos-
phorous and sulfur sources (PM4A), one plate of 
nutritional supplements (PM5), and three plates 
of amino acid dipeptides as nitrogen sources 
(PM6, PM7, PM8). Carbon source, D-Glucose, was 
omitted from MOD-CCMA when used to inoculate 
PM1 and 2a. Similarly, NH4Cl, KH2PO4 and vita-
mins were omitted from 20mM D-Glucose MOD 
CCMA when inoculating plates containing nitrogen 

sources, phosphorus/sulfur sources, and nutrient 
supplements, respectively. On plates 6-8, the posi-
tive control is L-Glutamine. The phenotypic mi-
croarray revealed a number of carbon and nitro-
gen sources that resulted in four times the growth 
or more compared to the negative control based 
on duplicate runs (Table 8 and 9), as well as sulfur 
and phosphorous sources that improved growth 
by 10% or more (Tables 10 and 11). None of the 
dipeptides resulted in an increase in growth more 
than twice the background, and so are not re-
ported here. Of the nutritional supplements tested 
in PM5, 2'-deoxyuridine and 2'-deoxyadenosine 
resulted in 10% growth improvement, while (5) 
4-amino-imidazole-4(5)-carboxamide, Tween 20, 
Tween 40, Tween 60, and Tween 80 resulted in 
20% growth improvement. 
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Table 6. Number of genes not found in near-relatives associated with the 25 general COG functional categories* 

Code Value Description 

- 151 Hypothetical (no conserved gene family) 

- 17 Transposase / Integrase (annotation-based) 

- 80 Transport (annotation-based) 

- 66 Signaling and Regulation 

J 6 Translation 

A 0 RNA processing and modification 

K 51 Transcription 

L 18 Replication, recombination and repair 

B 0 Chromatin structure and dynamics 

D 2 Cell cycle control, mitosis and meiosis 

Y 0 Nuclear structure 

V 7 Defense mechanisms 

T 30 Signal transduction mechanisms 

M 41 Cell wall/membrane biogenesis 

N 20 Cell motility 

Z 0 Cytoskeleton 

W 1 Extracellular structures 

U 22 Intracellular trafficking and secretion 

O 9 Posttranslational modification, protein turnover, chaperones 

C 20 Energy production and conversion 

G 68 Carbohydrate transport and metabolism 

E 28 Amino acid transport and metabolism 

F 5 Nucleotide transport and metabolism 

H 5 Coenzyme transport and metabolism 

I 14 Lipid transport and metabolism 

P 23 Inorganic ion transport and metabolism 

Q 8 Secondary metabolites biosynthesis, transport and catabolism 

R 43 General function prediction only 

S 23 Function unknown 

- 255 Not in COGs 

*Number of genes from set of 643 genes not found in near-relatives associated with the 25 general COG 
functional categories and several annotation-based classifications. Note that counts do not sum to 643 
genes as a given gene is sometimes classified in more than one COG functional category. 
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Table 7. Selection of lignocellulolytic carbohydrate active, lignin oxidative (LO) and lignin 
degrading auxiliary (LDA) enzymes [47,48]†. 

Locus Tag Family Function 

Entcl_0212 GH8 endoglucanase (EC 3.2.1.4) 

Entcl_1570 GH3 beta-glucosidase (EC 3.2.1.21) 

Entcl_0851 GH1 6-phospho-beta-glucosidase (EC 3.2.1.86) 

Entcl_0991 GH1 6-phospho-beta-glucosidase (EC 3.2.1.86) 

Entcl_1274 GH1 6-phospho-beta-glucosidase (EC 3.2.1.86) 

Entcl_3004 GH1 6-phospho-beta-glucosidase (EC 3.2.1.86) 

Entcl_3339 GH2 beta-galactosidase (EC 3.2.1.23) 

Entcl_0624 GH2 beta-galactosidase (EC 3.2.1.23) 

Entcl_2579 GH2 beta-mannosidase (EC 3.2.1.25) 

Entcl_2687 GH3 beta-N-acetylhexosaminidase (EC 3.2.1.52) 

Entcl_3271 GH4 alpha-galactosidase (EC 3.2.1.22) 

Entcl_0170 GH13 alpha-amylase (EC 3.2.1.1) 

Entcl_3416 GH13 alpha-glucosidase (EC 3.2.1.20) 

Entcl_2926 GH18 chitinase (EC 3.2.1.14) 

Entcl_2924 GH19 chitinase (EC 3.2.1.14) 

Entcl_4037 GH35 beta-galactosidase (EC 3.2.1.23) 

Entcl_3090 GH38 alpha-mannosidase (EC 3.2.1.24) 

Entcl_0250 CE4 polysaccharide deacetylase (EC 3.5.-.-) 

Entcl_3596 CE4 polysaccharide deacetylase (EC 3.5.-.-) 

Entcl_3059 CE8 pectinesterase (EC 3.1.1.11) 

Entcl_2112 LDA2 vanillyl-alcohol oxidase (EC 1.1.3.38) 

Entcl_1569 LDA2 D-lactate dehydrogenase (EC 1.1.1.28) 

Entcl_4187 LDA2 UDP-N-acetylmuramate dehydrogenase (EC 1.1.1.158) 

Entcl_3603 LO1 putative laccase (EC 1.10.3.2) 

Entcl_0735 LO1 putative laccase (EC 1.10.3.2) 

Entcl_4301 LO2 catalase/peroxidase (EC 1.11.1.6, 1.11.1.7) 

†Enzyme families are as per the CAZy and FOLy databases 
 

 
Figure 3. The entire 4-hydroxyphenylacetate degradation pathway is encoded in a single gene cluster HpaRGEDF-
HIXABC, including a divergently expressed regulator (HpaR), and a 4-hydroxyphenylacetate permease (HpaX). 
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Figure 4. The 4-hydroxyphenylacetate degradation pathway via homoprotocatechuate (3,4-dihydroxyphenylacetate). 

 

 
Figure 5. Anaerobic lignin degradation by “E. lignolyticus” SCF1 after 48 hours in culture, grown with xylose 
minimal media. 

 

Table 8. Carbon source by phenotypic array (PM 1 and 2a) 

Chemical Name KEGG CAS Ratio to background 
D-Fructose C00095 57-48-7 8.48 
D-Sorbitol C00794 50-70-4 8.36 
N-Acetyl-D-Glucosamine C03000 7512-17-6 8.30 
D-Gluconic Acid C00257 527-07-1 8.28 
D-Trehalose C01083 99-20-7 8.18 
D-Mannose C00159 3458-28-4 8.10 
D-Xylose C00181 58-86-6 8.09 
a-D-Glucose C00031 50-99-7 8.07 
N-Acetyl-D-Mannosamine C00645 7772-94-3 7.92 
D-Mannitol C00392 69-65-8 7.92 
D-Galactose C00124 59-23-4 7.92 
D-Glucosaminic Acid C03752 3646-68-2 7.85 
D-Ribose C00121 50-69-1 7.76 
b-Methyl-D-Glucoside  709-50-2 7.70 
D-Glucuronic Acid C00191 14984-34-0 7.69 
D-Glucosamine C00329 66-84-2 7.68 

http://standardsingenomics.org/�


“Enterobacter lignolyticus” SCF1 

80 Standards in Genomic Sciences 

Table 8 (cont.) Carbon source by phenotypic array (PM 1 and 2a) 
Chemical Name KEGG CAS Ratio to background 
D-Galactonic Acid-g-Lactone C03383 2782-07-2 7.67 
Maltose C00208 69-79-4 7.62 
2-Deoxy-D-Ribose C01801 533-67-5 7.57 
Glycerol C00116 56-81-5 7.52 
m-Hydroxyphenyl Acetic Acid C05593 621-37-4 7.42 
L-Arabinose C00259 87-72-9 7.40 
m-Inositol C00137 87-89-8 7.39 
L-Serine C00065 56-45-1 7.38 
3-Methylglucose  13224-94-7 7.36 
Maltotriose C01835 1109-28-0 7.30 
D-Melibiose C05402 585-99-9 7.25 
L-Fucose C01019 2438-80-4 7.25 
D-Arabinose C00216 10323-20-3 7.10 
Hydroxy-L-Proline C01015 51-35-4 7.08 
2'-Deoxyadenosine C00558 16373-93-6 7.02 
L-Alanine C00041 56-41-7 6.94 
Tyramine C00483 60-19-5 6.93 
Gly-Pro  704-15-4 6.93 
D-Galacturonic Acid C00333 91510-62-2 6.91 
L-Rhamnose C00507 3615-41-6 6.86 
p-Hydroxyphenyl Acetic Acid C00642 156-38-7 6.83 
Acetic Acid C00033 127-09-3 6.81 
L-Proline C00148 147-85-3 6.80 
Fumaric Acid C00122 17013-01-3 6.80 
D,L-Malic Acid C00497 6915-15-7 6.75 
D,L-Lactic acid C01432 312-85-6 6.71 
Dihydroxyacetone C00184 96-26-4 6.69 
Tween 20 C11624 9005-64-5 6.57 
N-Acetyl-D-Galactosamine  14215-68-0 6.45 
Inosine C00294 58-63-9 6.45 
Ala-Gly  687-69-4 6.43 
L-Histidine C00135 5934-29-2 6.37 
D-Alanine C00133 338-69-2 6.29 
D-Fructose-6-Phosphate C00085 26177-86-637250-85-4 6.25 
L-Glutamine C00064 56-85-9 6.08 
Gly-Glu  7412-78-4 6.00 
D-Cellobiose C00185 528-50-7 5.98 
D-Glucose-1-Phosphate C00103 56401-20-8 5.95 
D-Psicose C06468 551-68-8 5.92 
Citric Acid C00158 6132-04-3 5.91 
L-Glutamic Acid C00025 6106-04-3 5.84 
b-Methyl-D-Galactoside C03619 1824-94-8 5.70 
L-Aspartic Acid C00049 3792-50-5 5.65 
D-Serine C00740 312-84-5 5.63 
Methylpyruvate  600-22-6 5.62 
Pyruvic Acid C00022 113-24-6 5.56 
Propionic Acid C00163 137-40-6 5.48 
Melibionic Acid  70803-54-2 5.43 
D-Malic Acid C00497 636-61-3 5.38 
D-Aspartic Acid C00402 1783-96-6 5.38 
5-Keto-D-Gluconic Acid C01062 91446-96-7 5.37 
Succinic Acid C00042 6106-21-4 5.35 
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Table 8 (cont.) Carbon source by phenotypic array (PM 1 and 2a) 

Chemical Name KEGG CAS Ratio to background 
Gly-Asp C02871  5.28 
D,L-a-Glycerol Phosphate C00093 3325-00-6 5.26 
Putrescine C00134 333-93-7 5.14 
Gentiobiose C08240 554-91-6 5.00 
D-Glucose-6-Phosphate C00092 3671-99-6 4.90 
a-Methyl-D-Galactoside C03619 3396-99-4 4.84 
Uridine C00299 58-96-8 4.68 
Bromosuccinic Acid  923-06-8 4.68 
Thymidine C00214 50-89-5 4.63 
L-Asparagine C00152 70-47-3 4.55 
a-Hydroxybutyric Acid C05984 19054-57-0 4.38 
L-Malic Acid C00149 138-09-0 4.34 
L-Ornithine C00077 3184-13-2 4.28 
N-Acetyl-D-glucosaminitol  4271-28-7 4.23 
L-Lyxose C01508 1949-78-6 4.23 
L-Threonine C00188 72-19-5 4.21 
g-Amino-N-Butyric Acid C00334 56-12-2 4.19 
Arbutin C06186 497-76-7 4.17 

Table 9. Nitrogen sources by phenotypic array (PM 3b) 

Chemical Name KEGG CAS Ratio to background 
Gly-Gln  13115-71-4 5.63 
Gly-Asn   5.63 
L-Cysteine C00097 7048-04-6 5.29 
Gly-Glu  7412-78-4 5.26 
Ala-Gln  39537-23-0 4.92 
Ala-Asp C02871 20727-65-5 4.58 
L-Aspartic Acid C00049 3792-50-5 4.33 
L-Glutamine C00064 56-85-9 4.03 

Table 10. Phosphorous source by phenotypic array (PM 4a) 

Chemical Name KEGG CAS Ratio to background 
O-Phospho-D-Serine  73913-63-0 1.42 
Phospho-Glycolic Acid C00988  1.28 
Carbamyl Phosphate C00416 72461-86-0 1.26 
O-Phospho-L-Threonine  1114-81-4 1.25 
Tripolyphosphate C02466  1.24 
O-Phospho-L-Serine  407-41-0 1.23 
Cysteamine-S-Phosphate  3724-89-8 1.22 
Cytidine 2'-Monophosphate C03104 85-94-9 1.21 
Guanosine 5'-Monophosphate C00144 5550-12-9 1.21 
Guanosine 3'-Monophosphate C06193  1.20 
Phosphoenol Pyruvate C00074 5541-93-5 1.20 
Cytidine 3'-Monophosphate C05822 84-52-6 1.20 
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Table 10. Phosphorous source by phenotypic array (PM 4a) 
Chemical Name KEGG CAS Ratio to background 
Cytidine 5'-Monophosphate C00055 6757-06-8 1.20 
Adenosine 2',3'-Cyclic Monophosphate  37063-35-7 1.20 
Phospho-L-Arginine  108321-86-4 1.20 
Adenosine 3'-Monophosphate C01367 84-21-9 1.20 
Guanosine 2',3'-Cyclic Monophosphate  15718-49-7 1.19 
D-3-Phospho-Glyceric Acid C00631 80731-10-8 1.19 
Phosphate C00009 10049-21-5 1.19 
Guanosine 2'-Monophosphate  6027-83-4 1.19 
Thiophosphate  10489-48-2 1.18 
Thymidine 3'-Monophosphate  108320-91-8 1.18 
Thymidine 5'-Monophosphate C00364 33430-62-5 1.16 
6-Phospho-Gluconic Acid  53411-70-4 1.16 
Dithiophosphate   1.16 
2-Aminoethyl Phosphonic Acid C03557 2041-14-7 1.15 
Phosphoryl Choline C00588 4826-71-5 1.14 
D,L-a-Glycerol Phosphate C00093 3325-00-6 1.13 
Trimetaphosphate C02466 7785-84-4 1.13 

Table 11. Sulfur source by phenotypic array (PM 4a) 
Chemical Name KEGG CAS Ratio to background 
L-Cysteine Sulfinic Acid C00607 1115-65-7 1.24 
Gly-Met  554-94-9 1.23 
Tetramethylene Sulfone  126-33-0 1.21 
L-Methionine C00073 63-68-3 1.21 
N-Acetyl-D,L-Methionine C02712 71463-44-0 1.20 
L-Methionine Sulfoxide C02989 3226-65-1 1.19 
Tetrathionate C02084 13721-29-4 1.18 
L-Cysteine C00097 7048-04-6 1.17 
Sulfate C00059 7727-73-3 1.14 
L-Djenkolic Acid C08275 28052-93-9 1.14 
Cys-Gly  19246-18-5 1.13 

Conclusion 
Close relatives of “Enterobacter lignolyticus” SCF1 
were isolated seven independent times from Puerto 
Rico tropical forest soils, growing anaerobically with 
lignin or switchgrass as the sole carbon source, sug-
gesting that it is relatively abundant in tropical for-
est soils and has broad capability for deconstruction 
of complex heteropolymers such as biofuel feeds-
tocks. In a previous study, Enterobacter was one of 
four isolates from the poplar rhizosphere chosen for 
genomic sequencing because of its ability to improve 
the carbon sequestration ability of poplar trees 
when grown in poor soils [50]. 
Isolates from the Enterobacteriaceae are extremely 
genetically diverse despite the near identity of geno-
typic markers such as small subunit ribosomal (16S) 
RNA genes. Multi-locus sequence typing and compar-

ative genomic hybridization show that the isolates 
seem to fall into two distinct clades: the first being 
more homogeneous and containing isolates found in 
hospitals, and the second being more diverse and 
found in a broader array of environments [51]. 
This organism was determined to grow aerobically 
and anaerobically, and when screening for enzyme 
activity, the enzymes isolated showed accelerated 
phenol oxidase and peroxidase enzyme activity un-
der aerobic conditions. In addition, this organism is 
capable of growth in 8% ethyl-methylimidazolium 
chloride ([C2mim]Cl), an ionic liquid being studied 
for pre-treatment of feedstocks. This extremely high 
tolerance to ionic liquids is potentially quite useful 
for industrial biofuels production from feedstocks 
and the mechanism is currently under investigation. 
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